
Monitoring Web Services for Conformance
Bixin Li, Shunhui Ji, Li Liao, Dong Qiu, Mingjie Sun

School of Computer Science and Engineering, Southeast University, Nanjing 211189,Jiangsu, China,
Institute of Software Engineering, Southeast University, Nanjing 211189, Jiangsu, China

webpage: http://cse.seu.edu.cn/people/bx.li/index.htm

Abstract—In this article, we paid more attention on researching
how to monitor Web services for checking conformance, where
an AOP-based run-time monitoring framework was proposed
and explored1. In the framework, WS-Policy was firstly used
to express the monitoring requirement, then monitoring require-
ment was described as AOP monitoring logic; ActiveBPEL engine
was extended to weave the monitoring logic and the service core
execution logic dynamically; a checking algorithm was introduced
to analyze whether the user’s monitoring requirement was sat-
isfied according to MREG (Monitoring Requirement Expression
Graph) and EMSC (Extended Message Sequence Charts); and
finally, some control and modification measures were adopted in
order to rise the quality of the service composition.

Index Terms—Service monitoring, MREG, AOP, WS-Policy,
ActiveBPEL

I. INTRODUCTION

Web Service (WS) is a software system where distributed
applications communicate with each other on the web. Ex-
isting basic service specification framework only shows the
standard of service description, release and invocation [1]. As
the de-facto standard to describe web service composition,
BPEL (Business Process Execution Language) [2] presents
how some basic services to be assembled together to form
a business process, which affords more complex function.
Composite service essentially has dynamic attributes such as
re-composition, re-configure, and dynamic binding etc., which
show that even if the process is verified to be correct by the
conventional testing and validation techniques before running,
it is possible that the implemented and executed behaviors are
not conformance to the original requirement. Therefore, it’s
important and necessary to implement run-time monitoring of
WS to realize the actual situations. A monitoring framework
adds probes with a special purpose to detect anomalous
conditions, capture some important run-time information of
the process, and check them against the property specification
of the service composition. Run-time error information should
be reported as soon as possible to the service developers or
providers so that suitable countermeasures can be taken in time
to enhance the quality of service (or QoS).

In this article, a kind of AOP-based end-to-end monitoring
framework was proposed to tackle the conformance moni-
toring and checking of dynamic Web service composition.

1This work is supported partially by the National Natural Science Founda-
tion of China under Grant No. 60973149, and partially by Doctoral Fund of
Ministry of Education of China under Grant No. 20100092110022, partially by
the Innovation Fund of Southeast University under Grant No. Seucx201119,
and partially by the College Industrialization Project of Jiangsu Province under
Grant No.JHB2011-3.

Where WS-Policy model was used to express the user’s
monitoring requirements such as temporal logic, timeliness,
security, reliability etc., such expression manner is convenient
and explicit; then both EMSC and MREG were proposed to
describe the properties of the service: EMSC offers a graphical
representation to describe the desired execution behavior of
the process, while MREG shows some monitoring concerned
properties of the service; in addition, AOP technology [3] was
borrowed to extend the BPEL execution engine so that the
extended engine can send the monitoring logic to correlative
service entity, which makes the monitoring aspect be imported
into the corresponding BPEL execution logic automatically
and effectively without changing original system. A special
checking algorithm is also given to analyze the service execu-
tion behavior.

The rest parts of this paper are organized as follows:
Section II introduces some basic concepts and terminologies
for later reference; Section III includes a motivating sample
service which is discussed throughout in whole article; Section
IV discusses how to use WS-Policy to describe the user’s
monitoring requirements on the service; Section V discusses
MREG and checking algorithm; Section VI discusses our end-
end monitoring prototype framework in detail, where extended
MSC [7] and MREG are used to represent desired properties
of Web service composition, checking algorithm is designed
to check Web service composition for conformance; Section
VII discusses how to extend ActiveBPEL; VIII discussed case
study and empirical analysis status; Section IX discusses the
related work in the monitoring area; Section X draws some
conclusions and discusses future work.

II. BASIC TERMINOLOGY

For easy to understand next monitoring framework, it is
interesting to explain some basic concepts and terminologies
in this section.

• WS-Policy expression expresses user’s monitoring re-
quirements in a form of WS-Policy model and docu-
ment(refer to section IV.1).

• AOP monitoring logic includes some AOP aspect models
which concerns concrete meanings of monitoring require-
ment, where a summary of AOP implementation logic
is used to capture related running information of Web
service (refer to section IV.2).

• Service description execution logic is a kind of descrip-
tion language for Web service composition, including
WSDL, BPEL and OWL-S etc. A service execution

2013 IEEE Seventh International Symposium on Service-Oriented System Engineering

978-0-7695-4944-6/12 $26.00 © 2012 IEEE

DOI 10.1109/SOSE.2013.16

92

2013 IEEE Seventh International Symposium on Service-Oriented System Engineering

978-0-7695-4944-6/12 $26.00 © 2012 IEEE

DOI 10.1109/SOSE.2013.16

92

engine calls some related resource to execute service pro-
cess according to the information from service description
execution logic.

• Monitoring information denotes the service running infor-
mation, being generated during service process execution,
captured by some special monitoring logic implementa-
tion codes that are relevant to monitoring requirement
aspect.

• Monitoring and checking result shows some results in
detail about whether the monitored information are con-
formance to property specification and user’s property
requirements.

• Modification information includes some feedback in-
formation from checking process, which are used as
guidelines for the correction and optimization of service
process.

III. MOTIVATING SAMPLE SERVICE

A simple but effective example of the monitoring issue
is described for a travel reservation service, which supports
the function of vehicle booking, room booking, user account
validation and payment online. The whole composite service
is a business process expressed as a BPEL document. After
the user puts in the reservation information, the service process
will check user’s account. If checking passed successfully, then
either Airline or Train service will run in parallel with Hotel
service. In this paper, we only pay attention to the reservation
implementation phase of the service process. Corresponding
BPEL structure is depicted in Figure 1. The business process
(TravelReservation) contains the basic service Hotel,
Airline and Train.

 [invoke]
ReserveHotel

timeouts ?

 [assign]Hotel-
Reservation

[assign]Hotel-
Cancellation

 [invoke] CancelHotel

[invoke]Res-
erveAirline

[invoke]Res-
erveTrain

[assign]Train
-Reservation

[assign]Airlin -
eReservation

[onMessage] [onAlarm]

[pick]

[switch]

YesNo

TrainFlight

[onMessage]

[onMessage]

flow

Fig. 1. BPEL document structure of reservation

Since the invalidation of the reservation service will result
in delay of the travel, user needs to be informed by the
monitoring system in time. Then he can seek for another
booking way or modify the travel plan in advance. At the same
time, monitoring system should collect the useful monitoring
information and feed them back to the service supervisor. That
will help improving the quality of the original service process.
Moreover, in the composite service available basic services
are composed to meet the predefined goal, both functional and

non-functional requirements impose that run-time environment
be capable of dealing with them. In fact, all these requirements
are just the monitoring concerned aspects, we called them
Monitoring Requirements. For example, temporal logic cares
the messaging behavior of WS, the executing sequence of the
activities and the services; timeliness requires the operations
and the activities contained in the service must be fulfilled
within a constraint time; security emphasizes on the message
encryption and authentication ways, while reliability takes care
of the successful reception of multiple messages sent from one
service to the other service and the service response efficiency.

IV. USER’S MONITORING REQUIREMENT EXPRESSION

In this section, we will discuss how to express user’s mon-
itoring requirements using WS-Policy model and document.

A. User’s Monitoring Requirement

In this article, the user includes two kind of users, one
denotes the end-user who use Web service to realize their
wanted functions or services; another denotes the service inte-
grator who use existing basic services or composite services
to create new composite service for providing more powerful
functions. There are different monitoring requirements from
the two kinds of users: for end-user, he hope to know the
status of current running services such as the correctness of
function and efficiency, so that he can provide some science
empirical data for other users to select wanted Web services
later; for service integrator, he hope to test the running status
of integrated services (i.e., composite service) by monitoring
so that he can find problems, fix problems, complete service
composition, and improve QoS etc.

In general, user’s monitoring requirements can be classified
into functional property aspect and non-functional property
aspect. Table 1 summarizes some familiar user’s monitoring
requirement aspects, where three properties in above sections
belong to function monitoring requirements, the other four
properties belong to non-function or quality monitoring re-
quirements.

Towards the TravelReservation sample service, we
mainly consider three monitoring requirements presented be-
low.

• Temporal logic: It requires all the message sequences in
the reservation implementation scene transfers following
the BPEL document specification. This requirement is
always essential, and it is correlated to the functional
property of the service.

• Timeouts: It emphasizes that the hotel must be success-
fully reserved within time t1 or reservation is canceled
when timer value beyond t1, the whole reservation should
be accomplished within time t2. Here both time t1 and
t2 are set by the user, we assume t1 equals 20 seconds
and t2 equals 60 seconds.

• Reliability: We need to know the success invocation
probability of the Train service in the past 5 minutes and
the average response time t3.

9393

TABLE I
MONITORING REQUIREMENT, MEASURE CRITERIA AND CHECKING MEANS

Monitoring requirement Measure criteria Checking means
runtime external errors returned result from Web service compare returned results with expected results
temporal logic sequence of operations and messages analyzing execution trace according to operation contract
timeouts execution time of operation under onAlarm timing related operations and observe timeout process mechanism

security safety standards for service interaction capture and analyze the communication pattern of SOAP message
reliability the times of transaction failure per month or per year create failure database for service process
transaction final consistency of service-related common data analyze business-related service execution result using counterexample
performance the number of requests processed and successful instance counting and

corresponding time in a given time single instance execution step timing

These requirements will be implemented in our monitoring
system. The time label (t1, t2, t3) will be vividly shown in
EMSC and the user’s special condition requirement will be
expressed in MREG.

B. WS-Policy Expression

Web Service Policy Framework (called WS-Policy in gen-
eral) provides a general purpose model and corresponding
syntax to describe the policies of a WS. It also gives a
flexible and extensible grammar for expressing the capabilities,
requirements, and general characteristics of entities in an
XML Web services-based system [4]. Using the WS-Policy
mechanism, we can associate the policies (as the monitoring
aspects) with the subjects (service entity parts, such as mes-
sage, activity, one component service or the whole composite
service) to which they apply. According to the standard policy
expression grammar, we can also define our own service policy
(i.e., Log, Timeout). This mechanism is convenient to describe
the user’s various monitoring requirements on the service.
We have defined the WS-Policy meta-model (in Figure 2)
for a unified monitoring requirement expression. Attribute
”Name” is the name of the current policy, attribute ”URI”
represents the URI of the policy and attribute ”ack” is the
policy selection identifier. When the value of ”ack” is ”true”,
that means this policy is selected. Furthermore, ”targetType”
denotes the type of the entity (message, activity, basic service
or the process) that applies the policy. ”targetName” shows
the name of that entity. The attribute ”URI” is very important.
It specifies the applied policy for the current monitoring
requirement. One monitoring requirement can be mapped into
several WS-Policy models, similarly one policy model can also
served for several requirements. Policy tells the monitoring
system to capture what kinds of running information of the
service. According to the syntax of WS-Policy, we can also
generate WS-Policy document from policy model. As Policy
document is XML-based, it can be transmitted on the web
easily. Furthermore, policy document also gives the actual
binding address information of the service entity, which will
help distributing the monitoring logic to the entity.

For the three monitoring requirements on the
TravelReservation sample service, we need the
message execution sequence and the execution time
information of the business process. So, we use the policy
Log and Timeout. These two policies are self-defined. Policy
Log tells the monitoring system to create a monitoring

 “Name”: Policy

-URL=…

-ack=…

-targetType=…

-targetName= …

TravelReservation_Log : Policy

-URL=http://wsmonitoring/Log

-ack=true

-targetType=process

-targetName= travelReservation

(a) (b)

Fig. 2. [a]:WS-Policy meta-model; [b]:Log WS-Policy model.

logic which can intercept message sequence, while policy
Timeout tells the system to create a monitoring logic which
can get the execution time information. Log WS-Policy
model is shown in Fig 2(b). We can see that the name
of this policy is ”TravelReservation Log”. URI is
”http://wsmonitoring/Log”, which is set in advance. We
assume that Log is an acknowledged policy (like as WS-
Security, WS-Trust). We can also find that the entity is
a process named ”TravelReservation”. Log policy
document is also shown as follows:

<wsp : P o l i c y Name= h t t p : / / wsmo n i t o r / Log ? xmlns : wsl = ” . . . ”
xmlns : wsp=
h t t p : / / schemas . xmlsoap . o rg / ws / 2 0 0 4 / 0 9 / p o l i c y>

<wsl : Log/>
</wsp : Po l i cy><wsp : P o l i c y A t t a c h m e n t xmlns : wsa=

h t t p : / / schemas . xmlsoap . o rg / ws / 2 0 0 4 / 0 8 / a d d r e s s i n g>
<wsp : Appl iesTo>
<wsa : E n d p o i n t R e f e r e n c e

xmlns : t r a v e l = h t t p : / / www. t x y . com / t r a v e l>
<wsa : Address> h t t p : / / www. t x y . com / t r a v e l
</wsa : Address>
<wsa : PortType>t r a v e l :\ v er b | T r a v e l R e s e r v a t i o n | Po r t Ty p e
</wsa : Por tType>
<wsa : ServiceName>\v er b | T r a v e l R e s e r v a t i o n | S e r v i c e
</wsa : ServiceName>

</wsa : En d p o i n t R ef er en ce >
</wsp : Appl iesTo>

<wsp : Po l i cy R efer en ce UR I =” h t t p : / / wsmo n i t o r / Log”/>
</wsp : Po l i cy At t ach men t >

Where the label ”<wsp: PolicyReference URI =
”http://wsmonitor/Log” />” specifies the Log policy; while
the label ”<wsp:AppliesTo>...</wsp:AppliesTo>” indicates
the detailed address of the service entity that applies the policy.
Here, Log policy is applied to the TravelReservation
service process located on ”http://www.txy.com/travel”.

For Timeout policy, we can also present its WS-Policy
model and document in the same way. In fact, as long as the
correlative policy for given monitoring requirement had been
defined, we can use this WS-Policy mechanism to express the
user’s monitoring requirement expediently.

9494

V. MREG AND CHECKING ALGORITHM

In this section, we will discuss how agency end check
returned monitor information and make the conclusion ac-
cording to service property specification and user’s definite
monitoring requirement. In our monitoring frame, two kinds of
information are provided for the checker located at agency end
to start the checking process, one is monitored information,
another is monitoring requirement expression graph (we call
it MREG), where monitored information is service running
information captured in service end, while MREG is a formal
service running specification generated based on the service
process description document (e.g BPEL) and user’s special
monitoring requirement aspect information. Using MREG we
can design a stable checking algorithm which is independent
on special monitored service property.

A. MREG

Definition 1: : MEvent is a set of message events in a
service process. Message event is described in the form of
action(variable), where action denotes the basic activities
described in related BPEL document such as invoke,receive,
reply and onMessage which marks the operation attribute,
while variable is corresponding parameter. In addition, empty
message event is also in MEvent, empty message event
has no actual meanings, it is only used to aid marking and
create a link when constructing event transition.Message event
transition denotes the sequence execution of related activities
and further denotes the interaction process between service
process and partner services.

Definition 2: : MREG(SName, MEvent, R, F) is a
quaternion which contains following four elements:

• SName is the name of monitored service process.
• MEvent is message events in monitored service process

(refer to definition 1). Empty message is permitted in ac-
tual construction of MREG to keep MREG integrality.

• R is a set of monitoring requirement variables which
is consistent with user’s different monitoring require-
ments. R is partitioned into many subsets as R =
{ε, C, T, S, · · ·}, where ε is a set of empty variables
for aiding to construct a complete MREG; C is a set
of conditional variables representing conditional variable
request of message event transition; T is a set of time
variable expressions denoting the time condition for a
transition occurs; s is a set of security variables denoting
the security conditions should be satisfied by a message
event; additionally, R can be extended to express more
kinds of monitoring requirements.

• F is a transition function of message event, which reflects
the transition status of message event for all kinds of vari-
ables in R. For example, function F (m1, c2, t1) = m2

denotes that m2 will happen and tightly follow m1 when
requirement variables both c1 and t1 are satisfied syn-
chronously,where m1, m2 ∈ MEvent, c1 ∈ C, t1 ∈ T .
In practice, the types and numbers of variable conditions
that each message transition depends may be different

for different service process description documents and
user’s different monitoring requirements.

B. EMSC

MSC (Message Sequence Chart) provides a trace language
for the specification and description of the communication
behavior of system components and their environment by
means of interchange [7]. In MSC the communication behavior
is presented in a very intuitive and transparent graphical
manner the same as in UML sequence diagrams, but it offers
more useful notations (i.e., time label, local event) that can be
used to express monitoring properties of the service expedi-
ently. We properly extend one subset of MSC to model the
communication process of the WS described by BPEL, which
we call it EMSC, a kind of extended MSC. The corresponding
relationships between the BPEL document elements and the
EMSC members are shown in Table II.

In EMSC, process and its partner service are expressed
as process instance and service instance, the specification
of behavior properties, such as message transition sequence
and message response time in a service interaction scenario,
are expressed by describing the receiving and sending of
message among services, the sequence relation of local event
(for example: variable assignment, timing of a message etc)
and message event. We usually call scenario of a single
service interaction BMSC, i.e., basic MSC. Message event
mainly denotes an operation behavior of basic activities be-
tween service process and component service interaction in
BPEL document, where basic activity is defined as a set of
several relevant message events, while the value change of
assign activity variable caused by these operations can be
expressed using simple event of a store variable in MSC. For
other familiar structure activities, such as sequence, choose,
and concurrency, they are defined as sequence execution,
branch execution and synchronization concurrent execution,
respectively. Structural activity while can not occur in the
scenario of single service interaction, this case describing
loop execution of a scenario can be described using HMSC
(High-level Message Sequence Chart). In service composition
process, many local interaction scenarios can form a complete
service interaction scenario according to conditional variables
in structural activities and logic dependence relations between
scenarios. HMSC describes the transition between scenarios
and the state change of whole service process and express
service running logic in a whole. HMSC is a directed graph
which uses BMSC as node and use edge as sequence relation
between nodes, where a BMSC may be reused by HMSC
to denote the sequence, while and choose relations between
scenarios.

EMSC introduces some service conceptions into MSC.
Among these conceptions, message event in the form of
”action (variables)” is the most important conception.
EMSC can describe the message sending and receiving, the
local events (setting value for the variable, clocking the
message, etc.) and the BPEL message logic sequence. Besides,
the responding time and some other behavior properties of the

9595

TABLE II
CORRELATION BETWEEN BPEL AND EMSC

BPEL EMSC
process;partner process instance;service instance

variable the parameter part of the message event
correlationSet the dependence identifier of the messages

receive the message event sent from the service instance to the process instance
assign simple event the store the variable value
reply the message event process instance return for service instance

invoke the message event sent from process instance to service instance and possible return message event
activity the simple aggregation of serval message events

sequence serval activities executed in sequence
condition the local condition on the instance axis

if the branch activity executed depending on given condition
flow serval activities executed in parallel

onAlarm the activity activated by overtime operation
onMessage the message event passed to process instance and the activity arose

WS can also be represented. EMSC can also describe BPEL
structured activities with some special notations (such as par,
alt, when). For Travel Reservation sample service, the desired
execution behavior property is depicted by EMSC in Fig 3.
We can see that EMSC can be smoothly used to model the
interaction between BPEL process and its partners. The time
label t1, t2, t3 put forward in Section II are marked distinctly.
For example, t3 is the time of accomplishing the train reser-
vation, that means t3 is equal to the sum time persisting from
the beginning message event reserveTrain(ReserveTrainIn) to
the end message event trainReserved(TrainReservedIn).

C. MREG Generation

In above subsection, we discuss how to describe the be-
havior property of interaction in service process simply and
intuitionally using some basic concept and principles from
MSC and EMSC. However, during monitoring Web service,
users usually expect the running of service process instance
not only conformance to service function property specifica-
tion expressed in form of BPEL or EMSC, but also satisfy
their more non-function features. Therefore, it is necessary to
combine EMSC and user’s special monitoring requirement to
generate MREG so as to check captured monitoring informa-
tion easily.

The main steps of generating MREG are as follows:

• Transform each BMSC which denotes Web service pro-
cess and component service interaction scenarios into a
series of partial MREGs according to the sequence of
message event occurring, where requirement variable is
empty temporarily.

• Link all partial MREGs based on logic relations of HMSC
scenarios, where there a empty message event is added
between end message event of former scenario and start
message event of latter scenario, and a transition with
empty monitoring requirement variable ε is added be-
tween empty message event and former or latter message
event.

• Add start message event labeled with 0 and end message
event labeled with E for above generated MREG in step
2.

• Add conditional variables to activate message event tran-
sition and user’s special monitoring requirement aspect
information on service process to MREG.

In final MREG graph, circle with a number denotes message
event, special cases are using 0 denote process start and E
denote final state; the ε over the arrows between circles denotes
empty variable, which means a direct transition can happen
between the message events at two ends of arrow; ”C:...”
denotes conditional variable which means the variable con-
dition of the transition; ”T:...” is the time variable expression,
other service message event transitions all can be marked with
special symbols.

The MREG of TravelReservation service is shown in
Figure 5. The circle represents message event, some marked
beside with event names means the circle is an actual message
event, while some are only annotated with numbers means the
circle is a supplemental event. For the solid line, the annotation
”C : flight” on it means it is a variable condition line, while
”T : t < t1” means it is a time condition line. If there is
only ”ε” on the line that means the transformation can carry
through directly under any condition. Here, time and condition
constraints are the user’s special monitoring concern. They will
be used for checking monitoring information.

D. Checking Monitored Information

When both the monitored information and MREG have been
at hand, we can do the checking and determine whether user’s
monitoring requirements are satisfied or not. During checking,
it is necessary to maintain checking algorithm stable running
and use a unified and consistent way to check various user’s
monitoring requirements. A kind of pseudocode checking
algorithm based on MREG is preposed as follows:

We can see from the algorithm that the main task is how
to collect monitoring information and MREG on the initial
stage, line 3 mark the outermost structure of the service
process. In the main body of the algorithm, line 0 extracts
the sequence of message events happened in actual running
services from monitored information, and records important
service behavior information related to MREG’s monitoring
requirement variable R. The algorithm branches in line 2,

9696

TravelReservation AirlineReservation TrainReservation HotelReservation

assign ItineraryOut := HotelReservedIn

assign CanelHotelIn := $ ItineraryRef

When (Flight)

When (Train)

assign Itinerary := AirlineReservedIn

assign Itinerary := TrainReservedIn

reserveHotel (ReserveHotelIn)

hotelReserved (HotelReservedIn)

cancelHotel (CancelHotelIn)
cancelHotel (CancelHotelOut)

reserveAirline (ReserveAirlineIn)
airlineReserved (AirlineReservedIn)

reserveTrain (ReserveTrainIn)
trainReserved (TrainReservedIn)

(0 , t 1]par

alt

T

(0 , t2]

msc reservation _ implementation

(0 , t3]

Fig. 3. The reservation implementation scene in EMSC

1

8

E

9

7

6

53

42

0

11

10

C:flight C:train

reserveAirline
(ReserveAirlineIn)

airlineReserved
(AirlineReservedIn)

reserveTrain
(ReserveTrainIn)

trainReserved
(TrainReservedIn)

reserveHotel
 (ReserveHotelIn)

T:t<t1

T:t>=t1

hotelReseved
(HotelReservedIn)

cancelHotel
(CancelHotelin)

cancelHotel
(CancelHotelOut)

Fig. 4. MREG of reservation implementation

line 3, line 8 and line 9 corresponds to the checking of
sequence, parallel, choose and loop structure in service process
respectively and presents analysis steps for the four main
structure. In fact, Web service process may be composed with
nested basic services or composite services based on above
main four kinds of structure forms, the checking algorithms in
different structures should be used synthetically and layer upon
layer. Because checking algorithm are based on MREG, it not
only checks whether service execution behavior conformance
to BPEL specification, but also checks whether all kinds
of actual message event occurs, activity completion, basic
service invoke, and the running of whole service process

Algorithm 1 Checking monitoring information based on
MREG

Initialization Phase
1. Agency gets corresponding files from SIL
2. Agency disposes the useful instances information to get the eventual running results
sent to Analyzer
define: m=the number of result items (or the monitoring times)
3. Analyzer gets MREG. define: Static n=activity parallel numbers (from EMSC);
time and variable conditions (from EMSC)
Main Phase
if m! = 0 then

Analyzer takes out the mth result item, marks its message event sequence as
Sm = (Em1, Em2, , Emk) and records its other condition information (e.g.
interval time)
define: p = n

else if p > 0 then
tracking along MREG path from the start state 0 based on Sm;

end if
if If cannot reach the end state E then

print ”the mth result item is wrong”; break;
else if all message events in Sm have walked through (no remainder message event
in Sm) then

print ”the mth result item is wrong”; break;
else if back to state 0 then

p = p− 1
end if
if p <= 0 then

print ”the mth result item is wrong”;m = m− 1

end if

to satisfy user’s all kinds of monitoring requirement aspect
conditions. With the addition of user’s monitoring requirement
aspect, MREG can extend requirement variable set expression
without changing the main structure, checking algorithm’s
checking capability is expanded indirectly and adaptively and
furthermore service running behaviors and more properties can
be checked.

This is a stable checking algorithm which is independent
from some special monitored service property. The complexity
of algorithm is related to variable m and the length of message
event sequence. Checking algorithm is usually performed to

9797

check once or time-after-time given service process instance
running, the structure of process is well-designed and keeps
unchanged almost, so the value of m is fixed and not too
large. Similarly, the length of message event sequence of a
single service execution is also controlled. Therefore, for a
given service process document and given running result, the
execution time complexity of above checking algorithm is
acceptable.

In conclusion, EMSC provides a good way to describe
the interaction property specification of the BPEL service
process. MREG is generated based on EMSC, furthermore it is
endowed with more monitoring conditions and it is convenient
for checking monitoring information. The checking algorithm
will be shown in section IV.3.

VI. MONITORING PROTOTYPE FRAMEWORK

We give the monitoring framework for WS composition in
section VI.1, while in section VI.2 we simulate the monitoring
of the sample service. Lastly, the monitoring information
derived from the three monitoring requirements of the sample
service is checked against MREG in section VI.3.

A. Monitoring Framework

The functional logic of a service is regarded as core con-
cern, while non-functional logic is regarded as cross-cutting
concern. Cross-cutting concern is usually closely correlated
with the monitoring requirements. It commonly spans multi-
modules of the service. AOP is an aspect-oriented program-
ming technology, which can use the aspect to encapsulate
cross-cutting concern logic. Aspect can be added into the exist-
ing application smoothly and effectively. In article [13] AOP
is used to extend the BPEL language, forming AOP4BPEL
which has good modularity and flexibility. But this mechanism
will change the original BPEL document and a lot of service
facilities need to be improved. In this paper, we regard AOP
aspect as Monitoring Logic and use AOP to extend the open-
source BPEL engine ActiveBPEL [6]. The monitoring proto-
type framework is shown in Figure 5. Solid line with arrow
denotes the information path, which shows the interaction
among the components. Here, components indicate extended
ActiveBPEL engine, partner services (e.g. S1, S2, S3), and
other system components (e.g. Agency, Analyzer).

As in section IV.2, we expressed monitoring requirement as
WS-Policy. Policy document contains the address information
of the monitored service entity. We extend ActiveBPEL engine
with an important component Weaver. Weaver weaves the
monitoring logic with BPEL execution logic in three steps:
Firstly, it receives the WS-Policy document and finds the
matched BPEL; then, it distributes the policy to the related
partner service; finally, partner service generates the needed
monitoring logic and imports monitoring logic to the service
core logic on run-time. The partner service side is installed
with Monitoring Logic Adapter which can generate AOP as-
pect automatically according to special AOP language syntax
and the policy identifier information contained in WS-Policy

document. After adding monitoring logic into correlative ser-
vice core logic, it will produce the monitoring information
during the execution of the process. In Figure 5, we can see
that order is sent from the engine to Agency. In fact, order
indicates which kind of information (e.g. message sequence)
and which samples (during a period, e.g. the last 5 minutes)
of the service are concerned in current monitoring. Then,
Agency will use the order to request samples from SIL
(Sample Information Library). SIL stores many monitoring
results received from basic services. The results are stored
in the form of file. Moreover, SIL can create a table which
records the date and the time each file is generated. After
searching from the table, SIL will send the useful monitoring
information to respond the Agency. Then Agency will send
those monitoring result samples to Analyzer afterward. An-
alyzer checks the result against the MREG property speci-
fication of BPEL service. Finally we gain the current once
monitoring conclusion information of the composite service.
In this paper, we use AspectJ [5] as the AOP language. In
AspectJ, aspect has three important conceptions: join-point,
point-cut and advice. A series of join-points belonged to one
aspect are defined during the service executing, and point-cut
can match the aspect with its interesting join-points. Advice
defines the action actualized at the corresponding join-points.
Actually, each aspect is correlated with a point-cut, and it
defines some operations needed to be executed before, after or
around the matched join-points. Through this approach, AOP
separates the monitoring logic from the BPEL core execution
logic smoothly. It will intercept the monitoring information
during the execution of the BPEL process.

B. Monitoring and Checking Steps

In end-to-end monitoring framework, each end includes the
components to support monitoring, each component imple-
ment important special task. The arrows with labels in the
framework denotes the information flow and interaction pro-
cess during monitoring, where it is user’s monitoring require-
ment to drive the running of whole Web service monitoring
framework, which lead to following monitoring and checking
steps:

• User brings forward the monitoring requirements expres-
sion in form of WS-Policy mode and document.

• Generating MREG based on service description docu-
ment and constrain conditional information of the real
monitoring requirement aspects concerned by users.

• Monitoring logic generator transforms the monitoring
requirements expression to AOP monitoring logic, i.e.,
AOP model.

• ActiveBPEL Engine receives monitoring logic and find,
match BPEL service process instance to be moni-
tored, and then partitions AOP monitoring logic into
AOP1,AOP2,...,AOPn according to the value scope of
attribute target in monitoring logic, supposing that there
are n basic services S1, S2,...,Sn as monitoring objects
of composite service process, and distributes monitoring
logic to each partner service according to the detail

9898

Monitoring
Requirement

MonitoringLogGeneration

Service Exec ution Engine

MonitoringLogic
Adapter

Checker

S1

MonitoringLogic
Adapter

S2

MonitoringLogic
Adapter

Sn
Correc tor

MREG

Document

SIL

W SPolicyRepresen tation

A OP M onitor Log ic AOP1

Serv ice Des cription
Execution Log ic

M onitoring Information

Correcting
Information

M onito ring Resu lt

M onitoring Res ult
M onito ring Resu lt

M onitoring Res ult

A OP2

A OPn

1
2

3

3

3

4

3

4

3

4

5
5

6

9

7
7

7
8

6

User End Ag ency End S erver End

Fig. 5. End to End Service Monitoring Prototype Framework

address binding information in each service description
document. At the same time, Weaver complete the task
of weaving AOP monitoring logic and service execution
logic.

• Monitoring logic adapter confirms the legality and valid-
ity of current monitoring aspect required to be monitored
and monitoring requesters, and transforms each confirmed
AOP1,AOP2,..., and AOPn to corresponding monitoring
logic code (i.e., AspectJ code, AspectC code or As-
pectC++ code etc.) which matches each basic service.
Monitoring logic code can be executed in parallel with
service code function code when service is executed,
where AOP logic is inserted indirectly into service ex-
ecution code to monitor the running process of code and
capture monitoring information neatly and effectively,
and feedbacks monitored information to ActiveBPEL
Engine in a form of special file used in AOP model.

• Checker ChView uses designed special checking algo-
rithm to check monitored information and make checking
conclusion based on monitoring information from Ac-
tiveBPEL Engine and MREG.

• Monitoring and checking results are feedback to user and
stored in SIL(i.e., sample information library), so that
user can inqure monitoring and checking results later2.
In addition, ChView sends monitored result to Modifier
when result is wrong.

• User can inquire historical monitored results of corre-
sponding service process in SIL to aid to choose service
provider.

• Modifier analyzes monitored result and feedbacks some
guideline information about modification and optimiza-
tion of service process to service agent end of Ac-

2monitoring and checking result information is stored in SIL in a form of
database table, where date, time, corresponding store file including monitoring
information, and monitored result are recorded

tiveBPEL Engine. Agent end decides whether it is neces-
sary to deliver monitored result and modification sugges-
tion to service provider. Finally, relevant control modifi-
cations and assessment actions are adored selectivity and
QoS of composite service is improved.

VII. ACTIVEBPEL ENGINE EXTENSION

We have discussed the main structure and running process of
monitoring prototype framework, where core component is the
extension to ActiveBPEL Engine on agent end. In this section,
we will discuss how to extend an open source BPEL execution
engine ActicveBPEL engine. Extended ActicveBPEL engine
can transform AOP monitoring logic for user’s special mon-
itoring requirement to corresponding service entity so as to
support collecting monitoring information.

A. ActiveBPEL Engine

ActiveBPEL engine accepts the definition of BPEL pro-
cesses, create process instances and execute them. ActiveBPEL
engine includes three main parts: engine, process and activity.
Engine executes one or more matched BPEL processes based
on the sequence of activities to be included or links. Each
activity may call some external partner component services,
thus many component services are associated according to
operation sequence of activities to form Web service workflow
process composed by the interaction and collaboration of a
lot of component services. ActiveBPEL engine create process
instance according to BPEL process definition (i.e., XML file)
and execute this instance. ActiveBPEL engine is created by
an engine factory who still take charge of management of
supporting services. Engine configuration manage all support-
ing services of ActiveBPEL engine by using default provided
by an object and configuration file aeEngineConfig.xml.
The main functions of ActiveBPEL engine includes process
creation, data process with input and output, evaluating ex-
pression, recording process log etc., main components of a

9999

process includes Partner links, Partners, Variables, Correlation
sets, Fault handlers, Compensation handlers, Event handlers,
top-level activity and basic activity etc.

When an input message (a message relevant to invoke activ-
ity) or a PICK activity alarm arrives, i.e., an initial activity of
BPEL process is triggered, ActiveBPEL engine will distribute
input message to existing correct process instance according to
correlation sets or create a new matched process instance, and
further execute whole process based on internal links between
activities of the process. BPEL process is composed of three
type of activities: basic activity, structural activity, and special
activity. basic activity deal with some simple behaviors, for
example, receive message, response message, invoke service,
and variable assignment etc.; structural activity has some
construction type such as branches, loop, and sequence etc,
which are in general composed of many basic activities;
special activity can declare scope, deal with the stop of a
process and compensation etc. Each activity has a series of
execution states, it enters and leave these states now and then
based on happened internal events during execution.

B. ActiveBPEL Engine Extension

In our monitoring framework, Weaver is regarded as an ob-
ject of application process service, corresponding process class
is configured in configuration file aeEngineConfig.xml.
The class mainly extracts the value of target attribute in
AOP monitoring logic model, analyzes the hierarchy of target
(i.e., belongs the process itself or belongs to one or more
single basic service in the process), and then add monitoring
logic information and special identifier (e.g., identification
information on service agent end) to the first communication
message between basic services and process. Along this way,
monitoring logic is distributed to each basic service, moni-
toring logic is dealt with by monitoring support system (e.g.,
monitoring logic adapter) at each basic service, and monitoring
logic is weaved dynamically into service core execution code
in final service execution.

C. Monitoring Logic Adapter

Web service is loose coupling and dynamics: loose coupling
means that each basic service involved in a composite service
process may be located in different Internet site, implemented
in different programming languages and supported by different
software platform; dynamics means that it is a dynamic
selection process for a BPEL service process to determine
what basic services to be called, while each basic service could
has some unexpected changes such as upgrade of version etc.
It is worse that service provider can not notify users these
changes timely. Therefore, agent end transform monitoring
logic to service end to perform monitoring. Each basic service
participating BPEL service process in the framework has
its monitoring logic adapter. These adapters will transform
monitoring logic into local monitoring logic code matching
with basic service automatically based on attribute values in
AOP model, and capture service running information safely
and controllably when local service is called and executed.

Monitoring logic adapter is located at the end of service
provider for coordinating the real implementation of monitor-
ing logic and local service. Adapter can check the legality of
monitoring requirements and generate monitoring logic code.

MonitoringLogic Adapter

Authority
Database

Aspect
Database

Checker

Legal?

Lawless
request

AOP Monitor
Logic Code

S

A OP M o n ito rin g Lo g ic

Refu s e In fo rmatio n

M o n ito rd In fo rmatio n

Yes No

Server End

Fig. 6. Monitoring Adapter Running Graph

Figure 6 shows a monitoring adapter running graph, where
Checker, Authority Database, Aspect Database etc. are in-
volved. ActiveBPEL engine on the agent end adds AOP
monitoring logic in XML file format into the SOAP message
for calling basic services, and then transform the message
to a monitoring logic adapter installed in end service S;
Adapter calls authority record of each different-level agents
from Authority Database while Checker check the legality of
monitoring requirement (including whether the agent grade
is high enough and aspect to be monitored is permitted or
not etc.); If it an illegal monitoring requirement, adapter will
produce error report and return refuse information; If it a
legal monitoring requirement, adapter will call corresponding
Aspect template from Aspect Database and produce AOP mon-
itoring logic code for corresponding local service S implement
code according to monitoring logic content.

VIII. EMPIRICAL STUDIES

In this section, we will discuss what tools we have designed
and developed, how to simulate sample service, how to analyze
monitored information, and how about the monitored result
etc.

A. The Design and Implementation of WSMonitor

WSMonitor was implemented Java language in Eclipse
platform, where SWT/JFace package and RCP(Rich Client
Platform) technology are borrowed to create GUI and differ-
ent desk applications. Right now, WSMonitor has following
five function modules: (1) monitoring requirement expres-
sion; (2)monitoring logic generation; (3)monitoring adapter;
(4)checker; (5)modifier.

100100

B. Simulating Sample Service

We assume partner service S1, S2, S3 shown in Figure 6
represents Hotel, Flight and Train service respectively. Accord-
ing to the WS-Policy Log and Timeout presented in section
2.2, Weaver will find the suited TravelReservation
BPEL process and distribute the two policies to Hotel, Flight
and Train service. Then partner services will generate fol-
lowing Log and Timeout AspectJ aspects with the help of
Monitoring Logic Adapter.
P u b l i c a s p e c t AOP Log{

p o i n t c u t l o g \v er b | T r a v e l R e s e r v a t i o n | I n t e r f a c e () ;
e x e c u t i o n (∗\v er b | T r a v e l R e s e r v a t i o n | . .∗ ()) ;

b e f o r e () : l o g \v er b | T r a v e l R e s e r v a t i o n | I n t e r f a c e (){
Date d a t e =new Date () ;
S i mp l eDat eFo rmat d f =new ;
S i mp l eDat eFo r mat a t (” yyyy−MM−dd hh :mm: s s ”) ;
S i g n a t u r e s= t h i s J o i n P o i n t . g e t S i g n a t u r e () ;
MLogFile . p r i n t l n (d f . f o r m a t (d a t e)+
” [Mo n i t o r LOG] E n t e r i n g : ”+ s . t o S t r i n g ()) ;}

a f t e r () : l o g \v er b | T r a v e l R e s e r v a t i o n | I n t e r f a c e () ;{
Date d a t e =new Date () ;
S i mp l eDat eFo rmat d f =new ;
S i mp l eDat eFo r mat a t (” yyyy−MM−dd hh :mm: s s ”) ;
S i g n a t u r e s= t h i s J o i n P o i n t . g e t S i g n a t u r e () ;
MLogFile . p r i n t l n (d f . f o r m a t (d a t e)+
” [Mon i t o r LOG] E x i t i n g : ”+ s . t o S t r i n g ()) ;}}

p u b l i c a s p e c t AOP timeout{
p o i n t c u t t i m e o u t \v er b | T r a v e l R e s e r v a t i o n | I n t e r f a c e () :

e x e c u t i o n (∗ \v er b | T r a v e l R e s e r v a t i o n | . Ho t e l . . ∗ (. .))
|| e x e c u t i o n (∗\v er b | T r a v e l R e s e r v a t i o n | . A i r l i n e . . ∗ (. .))
|| e x e c u t i o n (∗\v er b | T r a v e l R e s e r v a t i o n | . T r a i n . . ∗ (. .)) ;

v o i d ar o u n d () : t i m e o u t \v er b | T r a v e l R e s e r v a t i o n | I n t e r f a c e (){
S i g n a t u r e s= t h i s J o i n P o i n t . g e t S i g n a t u r e () ;
T i mi n g C o n t ex t t c x 1 = Ti mi n g C o n t ex t . g e t C o n t e x t () ;

/ / System . o u t . p r i n t l n (” [Mo n i t o r Time] E n t e r i n g :
/ / ” + s . t o S t r i n g () + ? a t : ”+ t c x 1 . S t a r t ()) ;

p ro ceed () ;
Ti mi n g C o n t ex t t c x 2 = Ti mi n g C o n t ex t . g e t C o n t e x t () ;

/ / System . o u t . p r i n t l n (” [Mo n i t o r Time] E n t e r i n g :
/ / ” + s . t o S t r i n g () + ? a t : ”+ t c x 2 . S t a r t ()) ;

Date d a t e =new Date () ;
S i mp l eDat eFo rmat d f =

new Si mp l eDat eFo rmat (” yyyy−mm−dd hh :mm: s s ”) ;
System . o u t . p r i n t l n (d f . f o r m a t (d a t e)+”\n ”

+”[Mo n i t o r Time]<”+s . getName ()
+” F u l f i l l m e n t t i me : ”
+(t c x 2 . Commit()− t c x 1 . S t a r t () + ” ms>”); }}

c l a s s Ti mi n g C o n t ex t{
p r i v a t e l o n g m;
p r i v a t e Ti mi n g C o n t ex t ()
{m=System . c u r r e n t T i m e M i l l i s () ;}

p u b l i c s t a t i c Ti mi n g C o n t ex t g e t C o n t e x t ()
{ r e t u r n new Ti mi n g C o n t ex t () ;}

p u b l i c l o n g S t a r t (){ r e t u r n m; }
p u b l i c l o n g Commit(){ r e t u r n m; }}

Log aspect defines a ”before and after” type advice action
(point-cut) ”log TravelReservationInterface”. This as-
pect will record the start and the end of the message events.
The Log monitoring information will be stored in MLog-
File. Timeout aspect defines a ”around” type advice action
”timeout TravelReservationInterface”. This aspect will
record the execution time of each arisen message event in the
service process. The Timeout monitoring information will be
stored in MTimeFile.

Finally, the monitoring result information (Table III) is
stored in SIL.

TABLE III
THE TABLE OF SIL

Date Time File
2011-03-10 09:51:21 MLogFile
2011-03-10 09:51:33 MTimeFile
2011-03-11 01:45:04 MLogFile
2011-03-11 01:45:12 MTimeFile
2011-03-11 01:47:10 MLogFile
2011-03-11 01:47:32 MTimeFile

In Table 2, we can find that monitoring on the
TravelReservation service has been implemented for

three times. Detailed monitoring information files are shown
below.

C. Analysis of Monitored Information

The monitoring system gets the property specification
EMSC and MREG in section V and the monitoring results
from SIL in section VII.2.

The value of variable p is decided by the original design
business process, so it is also immutable for one given
service. The checking algorithm above is only for a particular
business process which includes the parallel structure and
the selective structure; however, as these two structures are
the most complicated BPEL activity forms, other process
structures can be easily checked with appropriate algorithm
change as well. For the TravelReservation service
sample, in the initialization phase (line 1) of the algorithm
Agency gets MLogFile and MTimeFile under some condition
constraint from SIL. Agency finds that monitoring has been
carried out for three times, so on line 2 variable m is
initialized with the value” 3 ”. As on line 3, Analyzer makes
known from the EMSC that two BPEL activities can run in
parallel, so it defines a static variable n with the value” 2 ”.
At the same time, Analyzer gets the time variables t1, t2,
t3, the condition variables flight, train and MREG (in Figure
4). There are three useful result items seen in Table II, so
on line 1 of the algorithm main phase Analyzer gets the first
result item (2008-08-10) from MLogFile. The item reveals
that the execution message event sequence S1 =(reserve-
Hotel(ReserveHotelIn),hotelReserved(HotelReservedIn),
reserveAirline(ReserveAirlineIn), airlineReserved
(AirlineReserved)). At the same time, Analyzer records other
condition information (such as ” C:flight ”) and the message
event interval time value. Variable p is set with the value of
variable n. From line 2 to line 7 is the processing segment that
checks the current result item. After Comparing with MREG,
Analyzer finds that there is a way ”0 > 7 > 8 > 11 > E”
with the way ”0 > 1 > 2 > 3 > 6 > E” side-by-side in
MREG (in Figure 5), so the message sequence is correct.
Here, the symbol ”>” represents the transfer from the left
state to the right state. On second thoughts, the information
on the same day from MTimeFile shows time t is 19541ms
(the sum of 12305ms and 7236ms). Because 19541ms is
less than 20 seconds which is the value of t1. So the way
”7 > 8” is correct. Taking into account time t2, Analyzer
finds in this running instance t2 equals the sum of 12305,
7236, 10928 and 8920, that is 39389ms. That is also less
than 60 seconds (given in section 2.1). Finally, Analyzer
gets the monitoring conclusion information for the first time,
the user’s monitoring requirements have been considered
carefully. The checking on the first result item has been
completed. On line 8, the value of m is decreased with 1,
the whole main phase loops into the next time checking task.
Similarly, the next two monitoring result items can also be
analyzed.

Monitoring requirement Reliability concerns the historical
run-time information of the basic service Train. Since we

101101

want to know the past 5 minutes’ situation, SIL filters out the
correlative date files. We assume now is 2008-08-11 01:48:00,
so the latter two monitoring result items are considered, they
are MLogFiles on 08-11 01:45:04 and 08-11 01:47:10 and
MTimeFiles on 08-11 01:45:12 and 08-11 01:47:32. We find
that t3 equals 35431ms (the sum of 28426 and 7005). We
also find that Train service is disabled in the last execution, as
message event ”trainReserved(TrainReservedIn)” was missed.
In conclusion, the success invocation probability of the Train
service is 50and the average response time t3 is 35431ms
in the past 5 minutes. The monitoring system will notify the
user that the Train service invoked from current provider is not
reliable. Then, the user will ask for another service candidate
to provide a service holding the same function. This measure
will help improving the quality of the composite service.

IX. RELATED WORKS

There are many works related to run-time monitoring of
Web Service Composition. The work in [8] introduces a
special monitor into the original BPEL process. BPEL is anno-
tated with some assertion expressions. Then it is transformed
into a new BPEL document with monitoring ability. The
advantage of this method is that monitor is also basic service
included in BPEL, so new BPEL can run on standard engine.
But the extended BPEL essential influence the performance
of the original process then our AOP method. With regard
to the efficiency of AOP technology, article [14] makes a
lot of research. The work described in [9, 12] also modifies
ActiveBPEL engine for monitoring purpose. But [9] just adds
some new general modules while our method benefits from
AOP to separate the cross-cutting monitoring logic from the
core business logic efficiently. A strongpoint of article [9] is
that it considers not only the process instance monitoring, but
also the process class monitoring, our method uses SIL to do
the same thing. Article [12] also extends ActiveBPEL engine
with AOP technology, but it does not show the way to generate
the AOP aspect from the monitoring requirement expressly.
Moreover, [12] uses the algebra specification language to
represent the functional property of the service, this language
is so sophisticated that a lot of rewriting and substituting
regulations need to be imported when checking the monitoring
information. In our method, EMSC and MREG property
specifications are simpler, and they can express both the
functional and some non-functional properties. Furthermore,
our checking algorithm based on MREG can check both the
message sequence and the time related property of the service
easily.

The work in [10] uses UML 2.0 Sequence Diagrams to
express Safety and Liveness property. Then the message
event track is checked against Finite State Automaton. During
the checking, negative and assert semantic is added to the
message event in the automaton, while our checking algorithm
utilizes some variable conditions to help the path tracing.
In our method, MREG is given in order to easily checking
the monitoring information. With the help of the designed
checking algorithm, only basic data structure is applied during

the checking, which reduces the cost overhead of the system.
Article [11] gives a monitoring mechanism based on OWL-S,
and extends the grammar of OWL-S to tackle the errors in the
monitoring phase.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an integrated process to
express monitoring requirement by WS-Policy, describe the
property of WS by EMSC and MREG, perform run-time
monitoring using AOP and check the monitoring information
based on MREG. However, they are the first step towards a
more powerful Web Service monitoring system. In the future,
we plan to enhance the system to support more monitoring
requirements such as security, transaction and so on. In fact,
with the help of AOP, diversiform monitoring requirements can
be achieved by adding more special designed AOP aspects.
On the other hand, we have chosen BPEL as the description
specification of the service, yet other web service workflow
specifications may be also taken into account in the future.

REFERENCES

[1] E. Newcomer, G. Lomow Understanding SOA with Web Services,
Addison Wesley Press, Boston, 2004.

[2] BEA Systems, IBM, Microsoft, et al Business pro-
cess execution language for Web services version 1.1,
http://dev2dev.bea.com/technologies/webserv ices/BPEL4WS.jsp,
February 2005.

[3] G. Kiczales, J. Lamping, et al Aspect-Oriented Programming, In: Pro-
ceedings of the European Conference on Object-Oriented Programming
(ECOOP), LNCS 1241, Finland, June 1997, pp.220-242.

[4] IBM, BEA Systems, Microsoft, et al Web Services Policy Framework,
http://www.ibm.com/ developer works/library/specification/ws-polfram/,
March 2006.

[5] G. Kiczales, E. Hilsdale, et al, An overview of AspectJ, In: Proceeding
of the 15th European Conference on Objected-Oriented Programming
(ECOOP 2001), 2001, pp.327-353.

[6] ActiveBPEL engine V4.0 ActiveBPEL engine V4.0, http://www. ac-
tivebpel.org/infocenter/ActiveBPEL/v40/index.jsp,2007.

[7] ITU-T, Z.120 Message Sequence Chart (MSC), ITU-T, USA, 1999.
[8] L. Baresi, C. Ghezzi, et al, Smart Monitors for Composed Services,

In: Proceeding of the 2nd international conference on Service oriented
computing (ICSOC), New York, USA, November, 2004, pp.193-202.

[9] F. Barbon, P. Traverso, M. Pistore, et al, Run-time monitoring of instances
and classes of web service compositions, In: Proceedings of the 2006
IEEE International Conference on Web Services(ICWS), Washington,
DC, USA, 2006,pp.63-71.

[10] Y. Gan, M. Chechik, et al, Run-time Monitoring of Web Service
Conversation, In: Proceeding of the 2007 conference of the center for
advanced studies on Collaborative research, Ontario, Canada,2007, pp.42-
57.

[11] R. Vaculin, K. Sycara, Semantic Web Services Monitoring: An OWL-S
based Approach, In: Proceeding of Hawaii International Conference on
System Sciences (HICSS), Pittsburgh, USA, 2007,pp.313.

[12] D. Bianculli, C. Ghezzi, Monitoring Conversational Web Services,
In: Proceeding of the 2nd International Workshop on Service oriented
software engineering (IW-SOSWE), Dubrovnik, Croatia, 2007.

[13] A. Charfi, B. Schmeling, et al, Reliable, Secure and Transacted Web
Service Compositions with AO4BPEL, In: Proceeding of the 4th European
Conference on Web Services (ECOWS’06), Zurich, Switzerland, 2006.

[14] A. Houspanossian, M. Cilia. Extending an Open-Source BPEL Engine
with Aspect-Oriented Programming, In: Proceeding of the Argentinean
Symposium on Software Engineering (ASSE’05), Rosario, Argentina,
August, 2005.

102102

