
Generating Test Cases of Composite Services Based on OWL-S and EH-CPN

Bixin Li1,2, Ju Cai1, Dong Qiu1, Shunhui Ji1, and Yuting Jiang1

1School of Computer Science and Engineering, Southeast University
Nanjing 210096, Jiangsu Province, P.R.China Email: bx.li@seu.edu.cn
2Dept. of Computer Science and Engineering, University of California

Riverside, CA92521, USA. Email: lbxin@cs.ucr.edu

Abstract

In web service times, the techniques for composing ser-
vices are the base of service reuse and automatic integra-
tion. A new web service will be generated by composing
some existed web services, these web services cooperate
each other to provide a new more complex function. It is
needed and very important to test the interaction behavior
between any two web services during composition. In this
paper, a kind of enhanced hierarchical color petri-net (or
EH-CPN) is introduced to generate test cases for testing
the interaction, where EH-CPN is transformed from OWL-
S document, and both control flow and data flow informa-
tion in EH-CPN are analyzed and used to generate an exe-
cutable test sequence, and further test cases are created by
combining the test sequence and test data in an XML file.

1 Introduction

Web service technology has got widely and warmly wel-

comed in developing application software based on internet

environment, but it has raised many new challenges for its

testers, where two core challenges will be considered in this

paper are: (1) source code of a web service is invisible to

tester: clients of a web service can have functions provided

by the service but they cannot get the source code of the ser-

vice. It means that structure testing strategies are not able

to be used to test your wanted single services, because it is

impossible for testers who are not service providers them-

selves to generate test cases from source code of a web ser-

vice, some informal specifications are explored to see the

possibility for generating test cases, so both difficulty and

complexity raise. The specifications which are being ex-

plored include WSDL, BPEL, and OWL-S, some necessary

transforms are needed to generate test cases automatically

and precisely; (2) many intermediate states of web service

are also invisible to testers, it is hard to do testing manually,

some automatic test techniques are needed.

In order to solve those challenge problems, researchers

have introduced a variety of useful methods [1, 2, 3]. But

most of these methods are based on WSDL or BPEL spec-

ification that specifies the location of the service and the

operations (or methods), which the service will be exposed

to clients. Test cases generated by these methods are more

suitable for atomic web service or a composite service

within an organization. In a wide composing service envi-

ronment, web service is usually used to interact with other

services from different organizations, it will play a different

role. It is needed and very important to test the interaction

behaviors among different web services when we compose

some existed web services in a certain style to provide new

functions.

In this paper, an EH-CPN based test case generation ap-

proach has been introduced, where EH-CPN is an enhanced

hierarchical color Petri Net. The outline of the approach is

summarized as follows: at first, OWL-S document is trans-

formed to EH-CPN and further the process of web service

composition is displayed by this kind of Petri Net; next,

data flow and control flow information of EH-CPN are ana-

lyzed in detail to find all output-input-define-use chains (or

OI-du-chain); next, OI-du-chain is extended to correspon-

dent executable test sequences satisfying ALL-DU-PATHS
criterion; finally, both test sequences and test data are com-

bined to generate test cases.

2 Primaries

There are three important concepts will be used in this

paper, let’s see how they are defined.

Definition 1 Multiset[4]

A multiset bag is a function from a non-empty set A to non-

negative integer set IN , bag : A → IN . Let set Bag(A) =�
a∈A bag(a) be the set of all the multisets that are defined

in set A.

Definition 2 E-CPN

350

An extended color Petri Net (marked as E-CPN in this

paper) is defined as follows: E-CPN is a 6-tuple <
P, T, C, Cd, Pre, Post >

(1) P is a finite set of places;

(2) T is a finite set of transitions. There are five kinds

of typical transitions in web service composition: (2.1) ser-
vice invoking transition: When this transition is fired, it will

invoke the corresponding web service; (2.2) condition con-
trolling transition: When this transition is fired, it will in-

voke a condition checking function whose return value is

Boolean, and which places the transition will go to depends

on the return value; (2.3) concurrent controlling transition:
This transition is used to assort with synchronization be-

tween transitions; (2.4) interface transition: This transition

will invoke checking function to check whether or not the

output from upper net equals to the input to fire sub net;

(2.5) empty transition: This transition will invoke nothing.

The aim to define this transition is to make the net satisfy

the definition of Petri Net in some special condition.

(3) C is a finite set of colors.

(4) Cd is a color function Cd : P ∪ T → C
(5) Pre, Post ∈ β|P |×|T |, both are Incidence Matrixes,

where Pre is a pre-Incidence Matrix and Post is a post-

Incidence Matrix satisfying following equations:

∀(p, t) ∈ P × T, Pre[p, t] : Cd(t) → Bag(Cd(p)),

Post[p, t] : Cd(t) → Bag(Cd(p));

β is a set of grouping functions in following form:

β : Cd(t) → Bag(Cd(p))

Definition 3 EH-CPN

An enhanced hierarchical color Petri Net (marked as EH-

CPN in this paper) is defined as follows: EH-CPN is a 4-

tuple < S, C, IC, I0 >
(1) S is a finite set of sub nets satisfying following fea-

tures:

(1.1) ∀s ∈ S, s = (E-CPN, Ci, Co), Ci is a finite set

of input colors, Co is a finite set of output colors.

(1.2)∀si, sj ∈ S and si �= sj , (Psi
∪Tsi

∪Asi
)∩ (Psj

∪
Tsj

∪ Asj
) = Φ

(2) C is a finite set of color

(3) IC is an interface checking function which will

check whether or not the output coming from the upper net

equals to the input that can fire the sub net.

(4) I0 is an initialization state

3 Transforming OWL-S to EH-CPN

OWL-S is a web service describing language based on

ontology. OWL-S document contains some useful control

flow and data flow information, but they all are hidden in the

descriptive level document. In order to analyze and capture

some useful information, it is needed to introduce a mech-

anism so as to transform OWL-S document to an EH-CPN

in constructive way. In this mechanism: (1) all input vari-

ables and output variables are represented by color tokens,

where each variable has its own color; (2) the services are

transformed into transitions; (3) all input and output states

are transformed into places containing tokens; (4) the pre-

condition is represented by a condition checking function in

condition controlling transition or a guard function; (5) the

effect is represented by an output arc.

In OWL-S document, some outputs are conditional out-

put, which means the output will contain different variables

according to different conditions. To transform these out-

puts into corresponding places, we use a condition control-
ling transition to follow the place to control different out-

puts. We also change the condition expression to condition

checking function and put the function into the condition

controlling transition. In this way, different outputs will be

dispatched to different places. The control flow and data

flow relations will be captured by connecting arcs, transi-
tions or arc expressions.

In OWL-S specification, the service process is divided

into three kind of forms, where the atomic process and the

composite process can be invoked, but the simple process

can not be, and therefore the transformation of simple pro-

cess isn’t needed. So we only analyze atomic process and

composite process in next sections.

3.1 Atomic process transformation

The atomic process describes the process of single ser-

vice that means it can not be divided again. It also has no

sub-services. When the input satisfies the firing rule, the

process will be invoked and corresponding output will be

produced. The construction of the atomic process of sub

net is more complex than that of the upper net, because sub

net must be connected to its supper net based on some con-

ditions. In order to check whether the input tokens coming

from upper net is conformance to the tokens required by sub

net, we add an interface transition. In this transition there is

an interface checking function used to check the input. But

we do not need this transition in non-sub nets.

In this paper, the atomic processes are divided into four

types according to the input and output: (1) Input coming
from single net. In this case, the input only comes from up-

per net. The transformation refers to Figure 1(a). (2) Input
coming from multi-nets. In this case, the input comes from

the upper net and the local net. The transformation refers

to Figure 1(b). (3) Non-conditional output. The transfor-

mation of the output part is the same as the output part of

Figure 1(a). (4) Conditional output. We add condition con-

351

Interface
checking

Service activity

Interface
checking

Service activity

Local
input

Interface
checking

Service
activity

C ondition
checking

(a)

(b)

(c)

Figure 1. The construction of atomic process

S ervice1 S equence
start

S ervice1

sub service sub service

Figure 2. Sequence structure

trolling transition to dispatch different output according to

the result of condition checking. The transformation refers

to Figure 1(c).

3.2 Composite process transformation

A composite process can be decomposed into some

atomic processes and/or other smaller composite processes.

If we organize atomic processes or composite processes in

a certain order using some control constructs, we will have

new web services for providing new functions. The control

constructs used in composite process include: sequence,

split, split+join, choice, any-order, if-then-else, iterate,

repeat-while, and repeat-until etc. Now we discuss how

to transform composite processes to EH-CPN in detail.

Sequence: The processes contained in this construct

will be invoked sequentially. The transformation refers to

Figure 2

Split+join: In this construct, the concurrent processes

are described too. All the processes have not only the same

precursor but also the same subsequence. When all the con-

current processes end, they enter next state at the same time.

We use a concurrent controlling transition to coordinate this

kind of synchronization. The transformation refers to Fig-

ure 3

If-then-else: Three properties i.e., ifCondition, then and

else, and two kind of services components are contained

S ervice1 S plit + join
start

sub service

C oncurrency1

sub service

C oncurrency2

sub service

C oncurrency
control l ing

Figure 3. Split+Join structure

in this construct; If ifCondition is true, the service in

then branch will be executed; otherwise, the service in else
branch will be executed. In our transformation, we map the

property ifCondition to a condition controlling transition
in EH-CPN to dispatch different states.

Repeat-while: In this construct, one testing condition
and one loop-process are contained. It tests the condition,

then, does the loop-process if the result is true, exits else. So

the loop-process is not executed if the condition is false. In

our transformation, the testing condition is mapped to con-
dition checking function, and then the function is put into a

condition controlling transition to display this construct in

EH-CPN.

Repeat-Until: This construct contains one testing con-

dition and one loop-process, which is the same as Repeat-

While construct. But there is a little difference of the exe-

cution process between them, it executes the loop-process

first, then checks the condition, later the loop continues if

the condition is true, exits else. So the loop-process will

be executed at least once anyway. We also map the testing

condition to a condition checking function and put it into

condition controlling transition to display this construct in

EH-CPN.

Any-order: This construct contains a list of processes

which will be invoked in any order except for concurrency.

All the processes must be executed at least once.

Using the above mechanism, we transform the control

constructs in OWL-S document to EH-CPN in a construc-

tive way. So the EH-CPN can intuitively describe the con-
trol flow of one process. But data flow is not very obvious.

4 Data flow in EH-CPN

In this section, we will discuss how to capture data flow

and control flow in the EH-CPN.

4.1 Notations and definitions

Firstly, we need to clarify some useful notations and def-

initions that will be used in our analysis.

(1) During the transferring process from transition Ti

to place Pj , the transition Ti will send some tokens

(x1, x2, ..., xn) to its subsequence place Pj . In EH-CPN,

these tokens are the interactive output of transition Ti and

are defined in place Pj . We mark this relation as Ti ·
Pj(x1, x2, ..., xn) in EH-CPN.

(2) During the transferring process from place Pi to tran-

sition Tj (non condition-controlling transition), the tran-

sition Tj will receive all needed tokens, which form the

interactive input of transition Tj . Obviously, they are

computation-use (or c-use) in Tj , and this relation is marked

as Pi · Tj(x1, x2, ..., xn) in EH-CPN.

352

(3) If transition Tj is a condition-controlling transition,

it will judge all the tokens (x1, x2, ..., xn) from pre-place

Pi. Obviously, these tokens are predicate-use (p-use) in Tj

and this relation is also marked as Pi · Tj(x1, x2, ..., xn) in

EH-CPN.

(4) If a token (i.e., a variable) x is defined in place Pi

and used in transition Tj (c-use or p-use), we call (Pi, Tj)
a define-use pair of token x and mark it as (Pi, Tj)x in EH-

CPN.

(5) A path segment in EH-CPN is defined as a sequence

which is composed of places and transitions and marked

as PATH = (Pi, Ti, ..., TjPj , ...), where, Pi, Pj ∈ P ,

Ti, Tj ∈ T . If token v is defined in place Pi and used

in transition Tj , we define PATH(v) as a define-use path
segment for v. If token v is defined only in a place Pi of

PATH(v) and no redefinition in any other places, we de-

fine this path as def-clear-path segment for v.

(6) From first three items, we know that all tokens are

the output of their pre-transition, and meanwhile the input

of their subsequence transitions. If a token v is defined in

place P as the output of the pre-transition of P (marked as

O) and is used in transition T as the input of the transition T
(marked as I). Place P and transition T are in the same path

(marked as PATHPT). We define this path as the output-

input-define-use chain (OI-du-chain) for token v and mark

this relation as (O, PATHPT , I).
If a token is used in a transition, it will be consumed,

so a token can be used only once in one process. Different

services will produce different outputs, so every token will

be defined only once according to first item. Therefore, we

can conclude that every OI-du-chain is a define-clear-path
segment.

(7) For a given set of test data, if there is a path in EH-

CPN, each transition in this path will be triggered sequen-

tially according to the order in path and arrive at final des-

ignated position. We regard this path as an executable path.

(8) There are two kinds of special positions in Petri Net.

One is the position that has no output-edges; another is the

position with end label. Both of them are regarded as end
position in EH-CPN.

4.2 Data flow analysis

By analyzing the incidence matrixes of EH-CPN, we will

have some useful data flow information for test case gener-

ation.

(1) we will have the define-use pairs of all tokens. On

one hand, the post-incidence matrix records tokens which

are produced after transitions have been fired. So a token

v is defined at the place where token appears for the first

time and this place should be added in the define-use pair
of token v. On the other hand, the pre-incidence matrix

records tokens which are needed to fire transitions. So the

transition which requires token v for the first time and this

transition should be added in the define-use pair of token v.

(2) After that, we can use those define-use pairs to find

all define-use-paths, further we will have all OI-du-chains
which contain all kinds of data flow information. In the

OI-du-chain, we can see which services are affected by a

certain variable. If we find all the OI-du-chain, we can get

all the interaction influence between services.

In next section, we will discuss how to generate test case

and illustrate how to get OI-du-chain in detail.

5 Test case generation

In EH-CPN based approach, test cases are generated in

three phases: we will discuss how to produce test sequence

in phase 1, then we discuss how to prepare test data in phase

2, finally we discuss how to generate test cases by combin-

ing test sequences and test data.

Phase 1: generation of test sequence Test sequences is

generated according to following steps:

Step 1: Preprocessor of EH-CPN The main work is

to identify the concurrent modules and modify them. In

EH-CPN, the concurrent module is described in split+join
structure. In this structure, there is a transition whose in-

degree is one and out-degree is bigger than one. We call this

transition split transition. There is a synchronization con-
trolling transition whose out-degree is one and in-degree is

bigger than one. Every concurrent module begins with a

split transition and ends with a synchronization controlling
transition. So we take this kind module as a black-box and

use one transition to replace the module whose input is the

input of split transition and whose output is the output of

synchronization controlling transition. The algorithm for

identifying all concurrent modules is omitted because the

space limitation.

Step 2: OI-du-chain generation OI-du-chain is com-

posed of three parts: O, I and PATH . By analyzing inci-

dence matrixes of EH-CPN, we can find all define-use pairs,

and further we can determine the O and I for every token.

The algorithm for computing the PATH of OI-du-chain
consists of two phases: (1) the algorithm is used to find a

sequence that begins with a transition where token v is used

and ends with a place where the token v is defined; (2) the

algorithm is used to reverse this sequence generated in (1).

By this way, we get a sequence which is the path of the

OI-du-chain for variable v.

Step 3: Pre-sequence and post-sequence generation To

let the path of OI-du-chain be an executable path, we need

to extend it with a pre-sequence and a post-sequence.

The computation of pre-sequence is easy, we can use the

algorithm in step 2 to compute it as long as we use the start

node of the EH-CPN and the first node in the path of OI-du-
chain as the two input parameters respectively.

353

P 0
T 0

P 1
T1

P2
T2

P3

T 5

P 4
T3

P5
T4

P6

Figure 4. concurrent module

Post-sequence can be found as follows: firstly, we will

find every subsequence node starting from the last node of

the path of the OI-du-chain until we arrive at end position,

and then, collect all the subsequence nodes orderly and a

post-sequence will be found. If a node has more than one

post-sequence, this way will find all the post-sequences.

Because EH-CPN is a hierarchical Petri-net, it is likely

that a complete path, consisting of the path segment of one

OI-du-chain and its pre-sequence and post-sequence, will

contain some transitions to sub nets. In this case, it is nec-

essary to replace those transitions with a new path in their

sub nets using above steps 1-3. The algorithm will repeat

this replacement process until the path segment of one OI-
du-chain has been found, where transitions do not contain

sub nets. In our EH-CPN based method, the path segment

of OI-du-chain with its pre-sequence and post-sequence al-

together are regarded as a test sequence.

Step 4: Test sequence generation for concurrent module
After steps 1-3, we have got a test sequence, but this se-

quence is generated based on modified EH-CPN in step 1.

where we just regarded concurrent module which includes

many transitions and places as a transition simply for easy

to deal with. If we find a sequence for real concurrent mod-

ules, we will have a complete and precise sequence based

on the primary EH-CPN. In order to get test sequences from

concurrent modules, we can do as follows: (1) we combine

every transition and its pre-places into one node, maintain-

ing relations between transitions unchanged. In this way,

the concurrent module has only one kind of nodes and we

name this net as action graph.(2) we construct test sequence

tree. The tree contains all the concurrent test sequences. (3)

one path which is from root to one leaf is a test sequence.

The following process illustrates how to transfer an ac-
tion graph into a test sequence tree: (1) Make the node

which is composed of split transition and its pre-place be

the root of a test sequence tree; (2) Delete above nodes and

their post arcs in action graph. The nodes which will be

deleted are in a path from root to node i in the kth(k ≥ 0)
level; (3) Find nodes which have no direct precursor and let

them be the children of node i.

Figure 4 shows the concurrent module in EH-CPN and

Figure 5 is an action graph of Figure 4, where we can

see that some transitions and places in Figure 4 have been

N 0

N 1 N 2

N 5

N 3 N 4

Figure 5. action graph

N0

N1 N3

N3 N2

N5 N5 N5 N5 N5 N5

N4 N2 N4 N2 N4 N2

N2 N4 N3 N1 N2 N4

N4 N1

Figure 6. test sequence tree

united as a new node in Figure 5. For example, P1 and T1
are united as node N1.

Figure 6 is a test sequence tree coming from Figure 5.

N0 is composed of split transition and its pre-places. So it

is the root of the test sequence tree. If we delete N0 and its

post arcs, we will find N1 and N3 with no precursor. So

N1 and N3 are children of N0 according to rule 2.

In Figure 6, the test sequence tree has six leaves, so it has

six test sequences. If we map nodes in one test sequence of

test sequence tree into corresponding places and transitions

in EH-CPN, we will get the test sequence of concurrent

modules. For example, (N0, N1, N3, N2, N4, N5) can

be mapped to (P0, T0, P1, T1, P4, T3, P2, T2, P5, T4,

P6, P3, T5). After generating test sequence of concurrent

module, we use these sequences to replace the correspond-

ing modified transitions in step 1. In this way, we will get

test sequences based on primary EH-CPN.

Step 5: Executable test sequence generation If there

are loops in EH-CPN, the test sequence is likely non-

executable. Because it is impossible to know how many

times the loop will execute exactly. In our EH-CPN based

way, we borrow the heuristic method, which is proposed

by C. Bourhfir[7], to solve this problem by finding an ap-

propriate loop and inserting it into the non-executable test

sequence to generate an executable sequence. Now we get

executable test sequences satisfying ALL-DU-PATH crite-

rion.

Phase 2: preparation for test data The main idea

to generate test data is originated from the XPT method

354

(XML-based Partition Testing) method in [8], which is con-

sisting of three parts: (1)map XML Schema which defines

the structures and data types of input and output of all the

web services to Category Partition. In this way, a set of

final instances and intermediate instance frames have been

got; (2) find all the preconditions which are included in the

services in one test sequence and do AND operation on all

those preconditions to get the value domain of the instances;

(3) generate the test data using random methods.

Phase 3: generation of test case Test cases in EH-CPN

based way is the combination of test data and test sequence,

where test sequence can be generated in section 5.1 and test

data can be got using the way in section 5.2. In EH-CPN

based way, the test sequence is only composed of all the

web services contained in a test sequence generated in sec-

tion 5.1. Test cases are coded in an XML file and can be

used as an input of a test tool.

6 Conclusion

There are many methods have been proposed to gener-

ate test cases for web service. These methods can be parted

into two basic categories: one can generate test cases based

on specifications, the other can generate test case based on

model checking, such as [1], [2],[4], [5], [6], [9], [10], and

[11] etc. In this paper, we introduced a method to generate

test cases based on a kind of extended hierarchical colored

Petri Net, where we transform OWL-S to EH-CPN for cap-

turing more control flow and data flow information so that

we can generate more precise test case. But the problem

is if there are too many services in one concurrent module,

the state explosion problem rises, so it is necessary to find

an effective method to solve state explosion problem and

improve our method in future work.

Acknowledgement

Bixin Li is now with University of California at River-

side as a visitor scholar and he thanks Prof. Rajiv Gupta

in University of California Riverside for providing a very

comfortable Lab. This work is partially supported by

the National Nature Science Foundation of China under

No.60773105, partially by the Natural Science Foundation

of Jiangsu Province of China under Grant No.BK2007513,

and partially by National High Technology Research and

Development Program under Grant No. 2008AA01Z113.

References

[1] X. Y. Bai, W. L. Dong, W. T. Tsai, and Y. N.

Chen. WSDL-Based Automatic Test Case Generation
for Web Services Testing. Proceedings of the 2005

IEEE International Workshop on Service-Oriented

System Engineering (SOSE’05).on 20-21 Oct. 2005

Page(s):207-212

[2] Y. B. Wang, X. Y. Bai, J. Z. Li, and R. B. Huang.

Ontology-Based Test Case Generation for Testing Web
Services. Eighth International Symposium on Au-

tonomous Decentralized Systems (ISADS’07).on 21-

23 March 2007 Page(s):43-50.

[3] H. M. Sneed and S. H. Huang. WSDLTest-A Tool
for Testing Web Services. Eighth IEEE International

Symposium on Web Site Evolution, 2006. Sept. 2006.

Page(s):14-21

[4] Y. P. Yang, Q. P. Tan, Y. Xiao, J. S. Yu, and F. Liu.

Exploiting Hierarchical CP-Nets to Increase the Reli-
ability of Web Services Workflow. In: Proceedings of

the 2005 Symposium on Applications and the Internet

(SAINT’06). on 23-27 Jan. 2006 Page(s):7 pp.

[5] Y. P. Yang, Q. P. Tan, J. S. Yu, and F. Liu. Transfor-
mation BPEL to CP-Nets for Verifying Web Services
Composition. Proceedings of the International Con-

ference on Next Generation Web Services Practices

(NWeSP’05). On 22-26 Aug. 2005 Page(s):6 pp.

[6] S. Y. Wang, P. Yu, J. J. Huo, and C. Y. Yuan. Petri
Nets for Systems Engineering. Publishing House of

Electronics Industry.2005.

[7] C. Bourhfir, R. Dssouli, E. Aboulhamid, and N. Rico.

Automatic executable test case generation for ex-
tended finite state machine protocols. In Proceedings

of IWTCS’97 [17], pages 75-90.

[8] B. Antonia, J.H. Gao, M. Eda, and P. Andrea. Au-
tomatic Test Data Generation for XML Schema-based
Partition Testing. Automation of software Test 2007.

Second Internation Workshop on 20-26 May 2007

page(s):4-4.

[9] D. Martin, A. Ankoleka. CongoProcess.owl docu-
ment. http://www.daml.org/services/owl-s/1.2/

[10] Y. Y. Zheng J. Zhou P. Krause. A Model Check-
ing based Test Case Generation Framework for Web
Services[. Fourth International Conference on In-

formation Technology (ITNG’07). on 2-4 April 2007

Page(s):715 - 722.

[11] L. Hua, and Y. X. Ming Generation Executable Test
Sequence Based on Petri-net for Combined Control
and Data Flow of Communication Protocol. Interna-

tional Conference on Communication Technology. On

22-24 October,1998 Page(s):S48-02-1 - S48-02-5

355

