
WSTester: Testing Web Service for Behavior Conformance

Bixin Li1,2, Lili Yang1, Shunhui Ji1, Dong Qiu1, and Xufang Gong1

1School of Computer Science and Engineering, Southeast University
Nanjing 210096, Jiangsu Province, P.R.China. Email: bx.li@seu.edu.cn

2Department of Computer Science and Engineering, University of California
Riverside, CA92521, USA. Email: lbxin@cs.ucr.edu

Abstract

In this paper, WSTester is introduced simply to show how
to test behavior conformance between Web services based
on interaction behavior specification and extended Labeled
Transition System, corresponding experiment results analy-
sis show the significance of the tool.

1 Introduction

In Web service times, it is necessary to realize the pre-

cise interaction and rapid integration of heterogeneous ap-

plications. Old independent point-to-point solution is un-

able to satisfy such new application requirement, it must

be replaced with service-guided distributed computing ar-

chitecture. SOA (Service-Oriented Architecture) is a new

paradigm that can be used to satisfy user’s current require-

ment. As a typical application case of SOA, Web ser-

vice has won the wide support from academia and indus-

tries. Web service is a network component over open soft-

ware platform, it supports interactive operation between dif-

ferent machines connected by the internet, it inherits the

merit of XML language, it adapts and supports interna-

tional open technology standards and specifications, where

WSDL (Web Service Definition Language) is used to de-

scribe Web service, UDDI (Universal Description, Discov-

ery, and Integration) is responsible for publishing and regis-

tering Web service in a Register Center so that it is easy for

service requestor to find his wanted service, SOAP (Simple

Object Access Protocol) protocol is used to bind and call it

after a service is found [1].

Since some ideas of Web service are originated from

object-orientation and component technology, they have

some common features. However, the obvious difference

between them is that a COTS component or an object is

physically integrated into application system developed by

the users, while only functions of Web services can be used

in their application by remote calling, the real running of a

service body is performed in the server located on the end of

service provider. Those services interacting each other in an

application are in fact distributed in different organizations

or departments. This reason makes it more complicated and

difficult to test the interactive behavior of Web service.

Next, WSTester is discussed about how to test behav-

ior conformance from the user’s viewpoint based on an ex-

tended Labeled Transition System called xLTS discussed in

[2], Labeled Transition System in [3], and interaction be-
havior specification introduced in [2], which was enlight-

ened by the idea in both [4] and [5].

2 WSTester

WSTester(Web Services Tester) is a conformance testing

experimental tool, which integrates xLTS model and UML

sequence diagram with OCL constraints. WSTester also

provides a set of tools for supporting specification analy-

sis, model transformation and model-based testing, it also

provides an exchangeable format for integrating with other

UML tool since its interface is based on XMI. WSTester has

functional components for generating test case and execut-

ing test process automatically, where xLTS model which is

transferred from UML model is the solid base for generat-

ing test case.

The flowchart of WSTester is described in Figure 1,

which includes four parts:

• Generate formal behavioral model: based on UML

2.0 sequence diagram and OCL constraint, LTS is ex-

tended to be xLTS with semantic information, both

data flow and control flow information can be captured

in xLTS and more rich information can be provided by

xLTS to generate test case.

• Generate test sequences and test cases: based on

xLTS, enough and wanted test sequences and test cases

are obtained.

456

W S T e s t e r I B S

U M L 2 . 0 S e q u e n c e
D i a g r a m

O C L C o n s t r a i n t s

x L T S

1 . G e n e a r a t e x L T S 2 . G e n e a r a t e t e s t
s e q u e n c e

3 . E x e c u t e t e s t
s e q u e n c e

4 . R e p o r t t e s t
r e s u l t T e s t r e s u l t

T e s t s e q u e n c e

W S D L

S e r v i c e P r o v i d e r S e r v i c e R e q u e s t o r
C o n t r o f l o w

D a t a f l o w

Figure 1. Flow chart of WSTester

• Execute test sequence: use test cases to test service by

remote calling and executing related services.

• Output test result: test report is output based on test

process record and final test result.

WSTester has four functional components: xLTS model
transformer, Test case generator, Main tester and wsCaller,

their main functions are introduced as follows:

(1) xLTS model transformer will be used to transfer in-

teraction behavior specification into xLTS so as to generate

wanted test case to satisfy test requirement.

(2) Test case generator is used to generate test case based

on xLTS.

(3) Dominant tester is the center modular for control-

ling test execution process that determines which test ac-

tions will be taken.

(4) wsCaller is used to call service to be tested.

3 CSW: an Illustration Example

Let’s see a sample service CSW (Customer-Supplier-

Warehouse), which is borrowed from [6]. In the CSW ser-

vice, the expected behaviors will be described as follows:

(1) Customer sends Supplier a request message re-
questQuote for inquiring the goods about quote price in-

formation;

(2) Supplier returns a response message requestQuote r
to reply the request

(3) Customer accepts the quote price and sends a mes-

sage orderGoods to Supplier for ordering the goods;

(4) Supplier will send a message checkShipment to Ware-

house after he accepts the order form;

(5) Warehouse checks the repertory to check whether it

is all right to consignment or not;

(6) Supplier will make different decisions according to

the checking result to Warehouse:

• (6a) If it is no problem to shipment now, Supplier

will send an acknowledgement message to Customer

S N . . . I m p l e m e t a t i o n

1 c o r r e c t i m p l e m e n t a t i o n

2 w h e n i n p u t e d q u a n t i t y o f g o o d s i s 0 , q u o t e o f g o o d s c a n b e r e q u e s t e d

3 q u o t e i n f o r m a t i o n o f a n o n - e x i s t e n c e i s r e q u e s t e d

4 t h e r e i s i n c o n s i s t e n c y b e t w e e n r e q u e s t e d g o o d s a n d r e t u r n e d g o o d s

5 a m o u n t o f r e q u e s t e d g o o d s i s l e s s t h a n a m o u n t o f r e t u r n e d g o o d s

6 o r d e r f o r m n u m b e r g e n e r a t e d a u t o m a t i c a l l y i s i n c o n s i s t e n t w i t h o r d e r i n g p r o c e s s

7 a m o u n t o f r e q u e s t e d g o o d s i s b e y o n d b i g g e s t r e p e r t o r y , b u t i t i s o r d e r e d

8 o r d e r f o r m n u m b e r s g e n e r a t e d i n d i f f e r e n t t i m e s a r e n o t i d e n t i f i e d

9 o r d e r i s r e c o r e d i n s y s t e m e v e n i t i h a s b e e n c a n c e l l e d

1 0 p a y m e n t a m o u n t i s c o m p u t e d i n c o r r e c t l y

Figure 2. Different implementation of CSW

for telling him that the order form has been accepted,

and Customer should do a makePayment operation

to make a payment, then Supplier asks Warehouse

to shipment, Warehouse sends Customer the message

getShipmentDetail to ask Customer the shipment de-

tail, Customer sends Warehouse the message con-
firmShipment to confirm this shipment, finally Ware-

house sends Supplier a message to confirm the mes-

sage confirmShipment.

• (6b) If it is impossible to shipment now, Supplier sends

Customer a message cancelOrder to cancel order form.

4 Experiment Result Analysis

For validating xLTS based method, one kind of correct

implementation and nine kinds of error implementations of

sample example CSW are designed in Figure 2 to check the

ability of our method and WSTester. For each implemen-

tation, we generate test case from LTS and xLTS model re-

spectively and observe what differences will happen when

each of them is used independently.

4.1 Evaluation factors

Two important factors needed to be checked to determine

the ability of a test method: error-checking capability and

test expensive. Error-checking capability is usually mea-

sured using test coverage rate(or TCR), while test expen-

sive (or TE) is measured by the length of test sequence(or

LOT). Our test goal is to perform a test with smallest test

expensive and strongest test capability. However the two

aspects are usually contradictory each other, so we pursuit

a strongest test capability when the contradiction can not be

solved. In our method, test coverage rate is computed using

the number of checked out errors (NCE) and the number of

total errors (NTE):

TCR =
NCE

NTE

TE = LOT

457

S N T e s t c a s e L O T

1 m; p a s s [] o t h e r w i s e ; f a i l 0

2
? r e q u e s t Q u o t e ; (! r e q u e s t Q u o t e ; (m;
p a s s [] o t h e r w i s e ; f a i l) [] o t h e r w i s e ; f a i l)) 2

3

? r e q u e s t Q u o t e ; ! r e q u e s t Q u o t e ; ? o r d e r G o
o d s ; (! c o n f i r m O r d e r ; (m; p a s s [] o t h e r w i s e ;
f a i l) [] o t h e r w i s e ; f a i l)

4

4

? r e q u e s t Q u o t e ; ! r e q u e s t Q u o t e ; ? o r d e r G o
o d s ; (! c a n c e l O r d e r ; (m; p a s s [] o t h e r w i s e ;
f a i l) [] o t h e r w i s e ; f a i l)

4

5
? r e q u e s t Q u o t e ; ! r e q u e s t Q u o t e ; ? o r d e r G o
o d s ! c o n f i r m O r d e r ; ? m a k e P a y m e n t ; (m;
p a s s [] o t h e r w i s e ; f a i l)

5

Figure 3. LTS-based test case

Test results SN

TCR (%) T est conclusion

1 0.0 Pass

2 0.0 Pass

3 60.0 Fail

4 80.0 Fail

5 0.0 Pass

6 60.0 Fail

7 60.0 Fail

8 0.0 Pass

9 0.0 Pass

10 20.0 Fail

Figure 4. Test conclusion

4.2 LTS-based test

At first, let’s see what will happen when we use LTS-

based test method proposed by Jiang [3], supposing the

biggest loop times is 1, then five test cases are generated

from xLTS in Figure 3, where m represents empty message

θ. The five test cases are used to test 10 kinds of different

implementations of CSW service, and the test result is given

in Figure 4.

We can see from Figure 4, only five kinds of error imple-

mentations of CSW service have been discovered, which

is caused by the construction of test execution trace with

sequence dependence relation. Because control-flow infor-

mation is considered in LTS-based method, it is easy to

check out the error produced in sequence operation. How-

ever, for LTS-based method, it is needed to add data into test

case manually, which limits the test capability of LTS based

method, added data will affect directly whether more errors

can be checked out or not. The reason for both the 2nd and

5th error haven’t been checked out is that LTS is short of

related data-flow information. It is needed to declare that it

is our limitation to loop times, which causes both 8th and

9th error haven’t been checked out.

S N T e s t c a s e L O T

1 ? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0 >
? O r d e r G o o d s < 1 , 4 0 0 > ! c o n f i r m O r d e r < 1 > ? m a k e P a y m e n t < 1 , 4 0 0 0 >

5

2 ? r e q u e s t Q u o t e < p r o d A , 0 > ! q u i e s c e n c e 2

3 ? r e q u e s t Q u o t e < s u n , 4 0 0 > ! q u i e s c e n c e 2

4 ? r e q u e s t Q u o t e < p r o d A , 1 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 0 0 , 1 0 . 0 , 4 0 0 0 > 2

5 ? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0 >
? O r d e r G o o d s < 1 , 4 0 0 > ! c o n f i r m O r d e r < 1 > ? m a k e P a t m e n t < 2 , 4 0 0 0 >

5

6 ? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0 >
? O r d e r G o o d s < 1 , 5 0 0 > ! q u i e s c e n c e 4

7

? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0
> ? O r d e r G o o d s < 1 , 4 0 0 > ! c o n f i r m O r d e r < 1 > ? m a k e P a y m e n t < 1 , 4 0 0 0 > ? r
e q u e s t Q u o t e < p r o d B , 5 0 0 > ! r e q u e s t Q u o t e < 2 , p r o d B , 3 0 0 , 2 0 . 0 , 6 0 0 0 > ?
O r d e r G o o d s < 1 , 3 0 0 > ! c o n f i r m O r d e r < 1 > ? m a k e P a y m e n t < 2 , 6 0 0 0 >

1 0

8
? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0 >
? O r d e r G o o d s < 1 , 4 0 0 > ? c a n c e l O r d e r < 1 > ? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r
e q u e s t Q u o t e < 2 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0 >

6

9 ? r e q u e s t Q u o t e < p r o d A , 5 0 0 > ! r e q u e s t Q u o t e < 1 , p r o d A , 4 9 0 , 1 0 . 0 , 4 9 0 0 >
? O r d e r G o o d s < 1 , 4 0 0 > ! c o n f i r m O r d e r < 1 > ? m a k e P a y m e n t < 1 , 4 0 0 0 >

5

Figure 5. xLTS-based test case

Real results SN

TCR (%) T est conclusion
1 0.0 Pass
2 11.1 Fail
3 11.1 Fail
4 77.8 Fail
5 77.8 Fail
6 44.4 Fail
7 11.1 Fail
8 11.1 Fail
9 11.1 Fail
10 44.4 Fail

Figure 6. Test conclusion

4.3 xLTS-based test

Now we will observe what will happen when we use our

xLTS-based test method. Test cases are listed in Figure 5,

where test sequences with different lengths are adopted, and

requests with different amounts for requesting quote are in-

put.

As we can see from Figure 6, all the errors included in

the nine kinds of incorrect implementation of CSW service

have been checked out. But the discovering of most of them

is based on the construction of sequence dependence test ex-

ecution trace, such as 6th, 8th and 9th errors. It is very hard

to check out them to use current methods based on single

service operation. In error checking, the check capability

of a tool is affected by length of test trace obviously. In

above example, some errors are easy to find by checking

quote information of goods. For example, the error of in-

consistency between requested goods and returned goods is

checked out easily by checking a trace with length equaling

to 2: observing the response after the quote information is

requested.

However, there are a lot of errors that can not be found so

458

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9

No.of Test Cases

N
o
.
o
f

F
a
u
l
t
s

xLTS

LTS

Figure 7. Test comparision

easily, they can only be found in sequence execution process

of multiple operations. For example, to check out the error

that the numbers of two order forms of goods are the same

for twice successful advance booking in different time, it is

needed to run two complete advance booking process where

the length of trace is 10. This shows, for the error existing in

sequence operation process, the longer the test trace is, the

stronger test capability is, but the test expensive for gener-

ating test case is increasing accordingly. To overcome this

shortcomings, we borrow on-the-fly test strategy, i.e., test

action is accompanying with test case generation, stopping

the test process as soon as the error is found, instead of start-

ing test after all of test cases have been generated, which ig-

nores the space explosion problem caused by model-driven

approach and reduces test expensive.

We can see from Figure 7 that the error checking cover-

age rate of xLTS-based method is higher than that of LTS-

based method, the main reason is that data-flow information

has been included in former method. But it is needed to

point that coverage rate 100% doesn’t mean that our method

has 100% coverage for any test. It is no meaning for cov-

erage rate itself, but it can be used as a reference data when

we do a compare between two methods.

5 Conclusion

There are some people who are doing research on be-

havior conformance testing, such as [5], [7] and [8]. En-

lightened by the main idea in these related work, both in-
teraction behavior specification and xLTS are introduced

to generate test case for testing behavior conformance in

this paper and its earlier version [2]. However, there are

still some shortcomings with our method, which encourages

us to do further work in our future time. Two representa-

tive issues are summarized as follows: (1) the inconsistency

caused by synthesizing xLTS from sequence diagrams must

be checked and solved, because the xLTS model generated

automatically from specification is just an approximation

of system, the prototype tool must support user’s manual

modification; (2) the way for combining xLTS model from

many different sequence diagrams must be considered in

next work. Because different sequence diagrams may have

some same or similar behaviors, how to combine and con-

firm these behaviors is a challenge problem.

Acknowledgements

The authors thank Prof. Rajiv Gupta in University of

California Riverside for providing a very comfortable Lab.

This work is partially supported by the National Nature

Science Foundation of China under No.60773105, partially

by the Natural Science Foundation of Jiangsu Province of

China under Grant No.BK2007513, and partially by Na-

tional High Technology Research and Development Pro-

gram under Grant No. 2008AA01Z113.

References

[1] W3C. Web Services Activity. http: // www. w3. org /

2002 / ws /.

[2] B. Li, X. Fan, and L. Yang. Extending Labeled Tran-
sition Systems for Conformance Testing of Web Ser-
vices. Technical Report, Southeast University, 2009.

[3] F. Jiang, Z. Ning. Automatic Test Case Generation
Based on Labeled Transition System. Chinese Journal

of Computer Research and Development, 2001, vol

38, no. 12.

[4] S. Pickin, C. Jard, T. Jeron, J. Jezequel, and Y. Traon.

Test Synthesis from UML Models of Distributed Soft-
ware. IEEE Transaction on software engineering,

April 2007, vol 33, no.4.

[5] E. Cartaxo, F. Neto, and P. Machado. Test Case
Generation by means of UML Sequence Diagrams
and Labeled Transition Systems. In: Proceedings of

IEEE International Conference on Systems, Man and

Cybernetics,7-10 Oct. 2007.

[6] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web
Services: Concepts, Architecture and Applications.

Springer Verlag, 2004. ISBN 3-540-44008.

[7] J. Tretmans. Conformance testing with labeled transi-
tion systems: Implementation relations and test gener-
ation. Computer Networks and ISDN Systems, 1996,

29:49-79.

[8] R. Heckel, L. Mariani. Automatic conformance testing
of web services. In: Proceedings of FASE, Edinburgh,

Scotland, Apr., 2005, 2-10.

459

