
A
e

B
a

b

a

A
R
R
A
A

K
R
W
T
E

1

i
U
a
t
T
o
a
c
o
b
f

a
c
a
c
s
d
c
s
s

c

0
d

The Journal of Systems and Software 85 (2012) 1300– 1324

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

j ourna l ho me page: www.elsev ier .com/ locate / j ss

utomatic test case selection for regression testing of composite service based on
xtensible BPEL flow graph

ixin Lia,∗, Dong Qiua, Hareton Leungb, Di Wanga

School of Computer Science and Engineering, Southeast University, Nanjing 210096, China
Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

 r t i c l e i n f o

rticle history:
eceived 23 January 2011
eceived in revised form 13 January 2012
ccepted 22 January 2012
vailable online 8 February 2012

a b s t r a c t

Services are highly reusable, flexible and loosely coupled components whose changes make the evolution
and maintenance of composite services more complex. The changes of composite service mainly cover
three types, i.e., the processes, bindings, and interfaces. In this article, an approach is proposed to select test
cases for regression testing of different versions of BPEL (business process execution language) composite
eywords:
egression testing
eb service

est case selection

service where these changes are involved. The approach identifies the changes by performing control flow
analysis and comparing the paths in a new version of composite service with those in the old one using a
kind of eXtensible BPEL flow graph (XBFG). Message sequence is appended to XBFG path so that XBFG can
fully describe the behavior of composite service. The binding and predicate constraint information added
in different XBFG elements can be used for path selection and even for test case generation. Both theoretic

how t
xtensible BPEL flow graph analysis and case study s

. Introduction

There are a lot of Web services that have been developed, reg-
stered and deployed in the Internet. We can send call request to
DDI (universal description, discovery, and integration) centers to
sk for the use of some Web services when we plan to integrate
hem into our application or compose them into a stronger service.
he services are usually classified into two types: (1) basic service
r atomic service, which has been developed by service developer
nd it is self-contained as it does not require other services; (2)
omposite service, which is composed of some basic services and
ther composite services according to some composing mechanism
y service developer or service integrator so as to provide stronger
unction to its users.

In current practice, service-oriented integration is a mainstream
pplication field of service computing, and the emergence of service
omposition technology makes the integration more convenient
nd efficient. On the one hand, service is a kind of component that
an be highly reusable, flexible and loosely coupled, which makes
ervice computing more significant in the distributed computing
iscipline. On the other hand, the evolution and maintenance of

omposite service will take on different looks from some traditional
oftware technologies because of these characteristics. However,
ervice user usually cannot access the source code of a basic service

∗ Corresponding author. Tel.: +86 25 83790109; fax: +86 25 52090879.
E-mail addresses: bx.li@seu.edu.cn (B. Li), dongqiu@seu.edu.cn (D. Qiu),

shleung@inet.polyu.edu.hk (H. Leung), di.wang@seu.edu.cn (D. Wang).

164-1212/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2012.01.036
hat the proposed approach is effective.
© 2012 Elsevier Inc. All rights reserved.

used in his system which adds to the difficulty in controlling the
evolution of service.

Regression testing plays a very important role during the evo-
lution and maintenance of composite service (Yoo and Harman,
2010). When any change happened to a service, regression testing
must be performed to check whether or not some new faults have
been introduced. The inherent characteristics, such as ultra-late
binding mechanism and non-observability of web service source
codes (Canfora and Penta, 2006, 2009), make the regression test-
ing for web service more challenging. Many works (Hou et al.,
2008; Mei et al., 2009, 2011) have applied test case prioritiza-
tion techniques to select test cases with higher APFD (Elbaum
et al., 2002) (average percentage faults detected) to verify whether
the functions of the modified service conform to the pre-defined
requirements. Since service users cannot obtain the source code,
they mainly use interface information that can be covered to
ranking the ability of error-detection of test cases. Although pri-
oritization technique can determine the execution order of test
cases, it cannot answer the question how many test cases are
enough for testing the evolved version of services. So test case selec-
tion techniques are introduced in web service regression testing.
Some works (Canfora and Penta, 2006; Penta et al., 2007; Keum
et al., 2006) proposed their methods, especially aiming at basic
services. However, less attention was paid on composite service.
Existing techniques, such as Ruth et al. (2007) and Ruth and Tu

(2007), who have applied graph walk analysis technique (Rothermel
et al., 1997) in the area of web service, assume that the struc-
ture of all participating services are provided by corresponding
service developers. They only focus on the functionality of center

dx.doi.org/10.1016/j.jss.2012.01.036
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:bx.li@seu.edu.cn
mailto:dongqiu@seu.edu.cn
mailto:cshleung@inet.polyu.edu.hk
mailto:di.wang@seu.edu.cn
dx.doi.org/10.1016/j.jss.2012.01.036

s and

s
s

i
p
i
i
n
s
a
T
p
t

s
t
b

B. Li et al. / The Journal of System

ervices and omit the feature of dynamic binding in composite web
ervices.

From the perspective of service integrators, they have the testing
nformation of both structure of service process and interfaces of
artner services. So the challenge is that, on the one hand, service

ntegrator need to check both the behavior of process itself and the
nteractive behaviors between services to guarantee the correct-
ess of entire composite service. On the other hand, all participating
ervices, including self-designed services or partner services man-
ged by third parties, may also evolve during their own life cycle.
his demands service integrators to proactively detect changes of
artner service. We will, therefore, discuss how to model the entire
esting procedure in this paper to conquer the above challenge.

The main contribution of this paper with its preliminary ver-

ion (Wang et al., 2008; Li et al., 2010) is fourfold: (1) we propose
he revised eXtensible BPEL Flow Graph (XBFG) to model BPEL-
ased composite service precisely. The core idea of XBFG is to

Fig. 1. BPELs of Loan composite
 Software 85 (2012) 1300– 1324 1301

construct XBFG path recording the execution trace of web service,
with newly introduced concepts in-process path and out-process
path, where the former focuses on depicting the behavior of process
itself and the latter focuses on interactive behavior between process
and partner services. In addition, both XBFG model construction,
including transformation rules of BPEL basic and structure activity,
and XBFG path generation are illustrated in detail in this paper. (2)
XBFG message sequence is newly proposed to record the message
exchanges between process and partner services, which is a direct
evidence to detect the interface change of composite web service.
The corresponding message sequence generation and comparison
algorithms are provided as well. (3) we provide an updated classi-
fication of change types (by removing the “path condition change”)
from the perspective of service integrator and provide the graphical

definitions of different change types, with comparison and relation
between them. (4) we explore five versions of carefully designed
subject composite service, by which we show how to effectively and

service with two versions.

1 s and

p
O
s
a
b
e
s

d
u
e
o
t
S
i
o
i
c

2

a
m
i

2

l
(
a
t

s
s
m
p
m

t
a
i
e
(
o

c
m
p

2

s
s
(
i
c
B
i
o
d

p

In this section, we identify five key perspectives of regres-
sion testing web services. Then we propose a new classification
302 B. Li et al. / The Journal of System

recisely select test case for evolved version of composite service.
ur empirical results indicate that our approach has more expres-

ive capability in recording the entire behavior of composite service
nd can detect three kinds of change types (e.g. process change,
inding change, and interface change). In addition, our approach is
ffective in selecting test cases for evolved BPEL-based composite
ervices.

The rest of the paper is organized as follows: Section 2 intro-
uces the WSDL and BPEL and gives a motivating example system
sed to illustrate our idea; Section 3 identifies the classifications of
volution and modification in Web service and gives an overview
f our approach; Section 4 illustrates the definition and construc-
ion of both XBFG and XBFG path for modeling composite services;
ection 5 discusses how to perform test case selection using XBFG
n detail; Section 6 performs some experiment and evaluation of
ur approach by using the motivating example and its four mod-
fied versions; Section 7 compares the related works; Section 8
oncludes the paper.

. Background

In this section, the prerequisite knowledge of WSDL and BPEL
re introduced first. Then BPEL-based service composition is sum-
arized and a motivating example is provided for convenience in

llustration.

.1. WSDL summary

WSDL (Web Services Description Language) is an XML-based
anguage for describing Web services and how to access them
Christensen et al., 2001). It specifies the location of the service
nd the operations (or methods) the service exposes. It stipulates
he interactive rules to use or also integrate the services.

WSDL defines a service’s abstract description in terms of mes-
ages exchanged in a service interaction (Curbera et al., 2002). A
tandard WSDL document usually contains two pieces of infor-
ation. One is abstract-level description that mainly includes

ortType, operation, message and type; the other is access infor-
ation that mainly includes port and binding.
Abstract-level description provides the functional interface of

he service. A portType is consisted of a set of operations. An oper-
tion defines the message exchange pattern which stipulates the

nteraction between services. A message is an aggregation of parts,
ach of which is described by type. The type can be a kind of XSD
XML schema definition) built-in type, such as string and boolean,
r a complex type that the user predefines.

Access information guides the service user to access service at
oncrete service end points. A binding defines how services com-
unicate over the specified protocol. A port describes a single end

oint as a combination of a binding and a network address.

.2. BPEL summary

Service composition is a way of reconstruction using existing
ervices to provide value-added application. BPEL, as the de-facto
tandard on service composition among all composition languages
Alves et al., 2007), is popular in not only academic but also
ndustrial community. It is an OASIS standard and XML-based exe-
utable language for specifying interactions with Web services.
PEL extends the Web services interaction model and enables

t to support business processes. Processes written in BPEL can

rchestrate interactions between Web services using standard XML
ocuments.

Composite service generated using BPEL is a combination of
rocess and partner services. Process is a plan composed of many
 Software 85 (2012) 1300– 1324

baseline steps, where each step is called an activity. Partner ser-
vice, like a basic service, is invoked through its external interface
exposed to users, though its inner can be complex and changeful.

In BPEL specification, activity is classified into basic activity and
structural activity. Basic activity can exist independently or in a
structural activity and is used to describe the unit behaviors of pro-
cess. The nine main kinds of basic activities defined in BPEL 2.0
specification are invoke, receive, reply, assign, throw, wait,
empty, extensionActivity, exit, and rethrow. Structural activity
prescribes the execution order of activities with control flow logic,
and is generally regarded as a container of other activities. The main
structural activities in BPEL 2.0 specification include sequence,
if, while, repeatUntil, pick, flow, forEach, scope, etc. More
details about these activities can be found in BPEL 2.0 specification
(Alves et al., 2007).

In addition, both partnerLink defined in BPEL and the end-
pointReference mechanism from WS-Addressing are used to
support service bindings (Gudgin et al., 2006). PartnerLink pre-
scribes the interaction rules between BPEL process and partner
services and only those satisfied with interface definition and func-
tional requirement can be considered as candidate partner services.
endpointReference is used to decide the service endpoint that the
process will bind. In BPEL, we can use assign activity to copy the
content of EndpointReference to corresponding partnerLink.

In this study, we focus on the problem of test case selection for
regression testing of BPEL-based composite service.

2.3. A motivating example

We use the loan composite service1 (LCS for short) extracted
from the project of Oracle BPEL Process Manager as an running
example. Here BPEL specifications of both the original version and
modified version are shown in Fig. 1. For the sake of simplicity,
nonessential statements such as space declaration, variable defi-
nition and assignment activities are ignored for saving space. The
version 1.0 of LCS (v1.0 for short) is composed of one service process
LoanFlow and three partner services including CreditRatingService,
UnitedLoanService and StarLoanService. CreditRatingService is a syn-
chronous service which provides users with functions such as
inquiring loan grade, accepting user’s inquiry request, returning
inquiry result, etc.; both UnitedLoanService and StarLoanService,
which share the same WSDL file, are asynchronous services
providing the function of loan. The process LoanFlow has four
partnerLinks, where client is used to call this composite ser-
vice; CreditRatingService, UnitedLoanService and StarLoanService all
denote partner services that the process invokes. LoanFlow first
receives a loan request from a client, then calls partner service
CreditRating Service for confirming the client’s loan grade using
SSN (social security number) filled in client’s application form. The
process will activate two concurrent tasks as soon as the inquir-
ing result has been received and confirmed: UnitedLoanService and
StarLoanService both receive request from the process and return
loan application result. Then, LoanFlow compares all results and
chooses the partner service with the minimal APR (annual percent-
age rate) value as the loan application goal, and returns the chosen
result to client. In version 1.1 of LCS (v1.1 for short), the service
integrator modified the content of assign in line 23.

3. Testing perspectives and composite service evolution
1 Detail is available at http://www.oracle.com/technology/products/ias/bpel/
index.html.

http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.oracle.com/technology/products/ias/bpel/index.html

B. Li et al. / The Journal of Systems and Software 85 (2012) 1300– 1324 1303

Table 1
Testing perspective for different stakeholders.

Testing perspective Ownership Testing strategy

Service developer Source code of BSa Black-Box
WSDL of BS White-Box

Service provider WSDL of Sc Black-Box
Service publisher WSDL of S Black-Box

Service integrator BPEL of CSb White-Box
WSDL of CS and BS Black-Box

Service user WSDL of S Black-Box

o
a

3

t
n
s
a
p

t
p

3

c
2
t
t
a
s
a
i
W

•

•

•

Table 2
Comparison of change types from the perspective of service integrator.

Change type Location Manageability Propagation

Process change BPEL Controllable Binding change
Interface change (CS)

Binding change BPEL Controllable
Interface change (CSa) WSDL Controllable Process change
Interface change (PSb) WSDL Uncontrollable Process Change
a BS is the abbreviation of basic service.
b CS is the abbreviation of composite service.
c S is the abbreviation of service which is composed of BS and CS.

f evolution types of composite service. Finally, an overview of our
pproach for testing composite service is provided.

.1. Testing perspectives

Due to the discriminative accessibility of service resources, the
esting emphasis of different stakeholders may be different. It is
ecessary to clearly define the testing duties and strategies of every
takeholder as the service evolves. Table 1 shows the ownership
nd test strategy of five key stakeholders: service developer, service
rovider, service publisher, service integrator, and service user.

In this article, we will focus on the perspective of service integra-
or when testing change to BPEL process and the interaction with
artner services.

.2. Change types of composite service

In general, BPEL-based composite service is composed of a pro-
ess, an interface described in WSDL specification (Christensen et al.,
001) and partner services interacting with the process. Therefore,
he evolution of BPEL composite service usually involves three
ypes of changes, i.e., the change of process, the change of interface
nd the change of binding. Fig. 2 shows the evolution of composite
ervice caused by different types of changes, where S1, S2, S3, S4(a),
nd S4(b) denote composite services, A1, A2, · · · , A7 denote activ-
ties, P1 and P2 denote partner services, and W1 and W2 denote

SDL specifications of S1 and P1, respectively.

Process change includes the change of BPEL activities and the
change of activities order. Service integrators may change the
internal structure of process due to new functional requirements,
where the addition or deletion of services, change of activities,
and the changes of execution sequence are all regarded as pro-
cess change. In Fig. 2, composite service S1 evolves to S2 by adding
a new activity A7 to S1.
Binding change is the change of endpoint addresses of partner
services. For example, the service integrator selects another candi-
date service to replace the original one which now is unavailable.
In Fig. 2, S1 evolves to S3 because the partner service that interacts
with A2 has changed from P1 to P2.
Interface change includes composite service interface
change and partner service interface change. In WSDL
Specification(Christensen et al., 2001), the interface of ser-
vice is composed of the definitions of the variables, messages,
operations and ports. So the interface change of service usually
means the change of these variables, messages, operations
and ports, as defined in a WSDL document. In most cases, the

service integrator modifies the interface of composite service
to improve the readability and programmability of WSDLs. In
Fig. 2, S1 evolves to S4(a) because interface document W1 has
changed to W1′. In addition, if the provider of a partner service
a CS is the abbreviation of Composite Service.
b PS is the abbreviation of Partner Service.

modifies the interface of the partner service, this will force the
service integrator to make corresponding change to the interface
or process of composite service in order to use the same partner
service. In Fig. 2, S1 evolves to S4(b) because the interface W2
of partner service P1 has changed to W2′ which causes A2 to
change in order to match the modified interface of P1.

It is important to understand the characteristics of these differ-
ent types of changes and their relationship since we can gain some
insight into regression testing. Table 2 provides a brief comparison
from three aspects:

• Location. Location refers to the position where changes take place.
Process change and binding change occur in BPEL documents while
interface change occurs in WSDL documents.

• Manageability. Manageability refers to the control the service
stakeholders have over the changes. From the perspective of
service integrators, they own both process implementation and
process interface, which means that process change, binding
change and composite service interface change are controllable.
When these changes occur during the service evolution, service
integrators can perform testing based on the result of change
impact analysis. However, partner services used in the process
are often developed and managed by other service developers or
service providers, which means the partner service interface and
its implementation are out of control of service integrators. If no
change notification is received, service integrators will not know
when and where the changes occur.

• Propagation. Propagation refers to the influence that the occur-
rence of one change type may have on the occurrence of other
change type(s). On the one hand, process change may cause com-
posite service interface change and binding change because service
integrator can modify the interface of composite service or use
other service to replace the current service. On the other hand,
since service integrators do not have the control over partner ser-
vices, they may have to make passive process change to adapt to
the change in the interface of the partner service. That is, the
occurrence of process change is forced by the occurrence of partner
service interface change.

3.3. Outline of our approach

We propose a new approach to solve the regression test case
selection problem of BPEL-based composite service. We will use the
binding change in Fig. 2 (from P1 to P2) as the example to explain
our approach. Fig. 3 provides a diagrammatic presentation of our
solution. There are four key steps:

• XBFG construction. For any composite service, XBFG is created
to express the complete behavior of composite service, where

binding information and predicate constraints are added as XBFG
elements for XBFG path computation and comparison. In Fig. 3,
the visual XBFG models of both old version S1 and new version
S3 are constructed as XM1 and XM3, respectively. Take XM1 as an

1304 B. Li et al. / The Journal of Systems and Software 85 (2012) 1300– 1324

Fig. 2. Evolution of composite service.

e of o

•

Fig. 3. Outlin

example, it consists of activities in process (such as A1), partner
services (such as P1) and control flow relation (such as solid line
between A1 and A2).
XBFG path computation. Based on generated XBFG, all XBFG
paths are defined and constructed for the selection of test cases,
where message sequences are calculated and attached to the
corresponding XBFG paths. In Fig. 3, both XBFG paths of XM1
and XM3 are calculated and only one XBFG path in each ver-

sion (XP1 for XM1 and XP3 for XM3) is shown as a representative
in this figure. The dashed line represents the message sequence
of the corresponding XBFG path (XMS1 for XP1 and XMS3 for
XP3).
ur approach.

• XBFG path comparison. XBFG path comparison are performed
to find process change and binding change and attached message
sequence comparison to find interface change so as to determine
which paths can be checked again by using selected test cases
of the baseline version, and which paths must be checked using
newly generated test cases. In Fig. 3, we perform pair-wise com-
parison on XBFG paths in two versions and find out that binding
change has occurred in new version S3 since XP3 does not equal

to XP1.

• Test case selection. After XBFG path comparison, test sets that
can be reused on the subsequent version are identified according
to the comparison result and mapping relation between XBFG

s and

4

X
m

(
w
p
H
t
p
c
a

r
p
B
p
c
d
s
i
w

4

d

D
B
t
t
w
N
n
T
(

D
�
n
fi
N
N
I
N
M

f
t

•

•

•

B. Li et al. / The Journal of System

path and test suite. In Fig. 3, we select test cases attached with
XP1 to test XP3.

. XBFG model

In this section, we discuss how to define XBFG, how to construct
BFG, how to define and generate XBFG path and how to define the
essage sequence.
BPEL flow graph (BFG) is a control flow model of BPEL process

Yuan et al., 2006). It supports concurrent control flow compared
ith traditional control flow graph (CFG) since it can describe BPEL
rocess completely and can be used to identify the process change.
owever, the implementation of BPEL composite service involves

he combination of process and partner services interacting with the
rocess. The inability to express the interaction between BPEL pro-
ess and partner services makes BFG not suitable for change impact
nalysis involving binding change and interface change.

In order to do change impact analysis on composite service
ather than just the process, we propose the XBFG model. Com-
ared with BFG, XBFG has following advantages: (1) BFG models
PEL process, while XBFG models not only BPEL process but also
artner services that are used by the process; (2) based on the
ontrol flow relation for BPEL, XBFG defines message sequence to
epict the interactive message flow between process and partner
ervices; (3) field is introduced in XBFG to record information about
nterfaces and path conditions for the purpose of regression testing,

hile no such information is available in BFG.

.1. XBFG definition

We first give the original definition of BFG, and then the formal
efinition of XBFG.

efinition 1 (BFG). The structural definition of BFG is as follows:
FG= 〈N, E, s, F〉, where N is a set of nodes, E is a set of edges, s is
he start node, and F is a set of final nodes. N = {ni}, 1 ≤ i ≤ p, p is
he number of BFG nodes, where n1 = s, ni ∈ {NN, DN, MN, FN, JN},
here NN, DN, MN, FN, JN denote Normal Node, Decision Node, Merge
ode, Fork Node, and Join Node, respectively; E = {ej}, 1 ≤ j ≤ q, q is the
umber of BFG edges, where ej = 〈a, b〉, a, b ∈ N, ej ∈ {TE, FE} where
E and FE denote True Edge and False Edge/Dead Path, respectively
Yuan et al., 2006).

efinition 2 (BFCG). XBFG is defined as a quadruple 〈XE, s, F,
〉, where XE is a set of XBFG elements which consist of XBFG

odes and XBFG edges. s is the start element, and F is a set of
nal elements; � is the field of XBFG element. XE = N ∪ E where

 and E denote the set of all XBFG nodes and edges, respectively.
 = IN ∪ NN ∪ SN ∪ EN ∪ MN ∪ CN where IN, NN, SN, EN, MN, CN denote

nteraction Node, Normal Node, Service Node, Exclusive Node, Multiple
ode and Concurrent Node, respectively; E = CE ∪ ME where CE and
E denote Control Edge and Message Edge, respectively.

In BPEL, not only basic but also structural activities can be trans-
ormed into XBFG nodes which are classified into following six
ypes:

Interaction Node (IN). It is created for those basic activities which
interact with the partner services. These basic activities include
invoke, receive, reply and onMessage in pick.
Normal Node (NN). It is created for other basic activities which do
not belong to IN, such as assign, wait and so on. Additionally, it
is also created for onAlarm in pick.

Service Node (SN). It is created for every partner service that is
defined by partnerLink in BPEL document. SN always appears
accompanied by IN. Additionally, it is also created for receive
when it is used as a start activity defined in BPEL document.
 Software 85 (2012) 1300– 1324 1305

• Exclusive Node (EN). It is also called “XOR” node which has two sub
types: Exclusive Decision Node (EDN) when its in-degree equals to
1 while its out-degree is greater than 1; Exclusive Merge Node
(EMN) when its in-degree is greater than 1 while its out-degree
equals to 1. EN is created for each of those activities that contain
conditional behavior, including if, pick, while, and repeatUn-
til.

• Multiple Node (MN). It is also called “OR” node, which is created
for link when its value of joinCondition is “OR” or null. MN is
divided into Multiple Branch Node (MBN) and Multiple Merge Node
(MMN).

• Concurrent Node (CN). It is also called “AND” node, which is cre-
ated for flow activity and link when its value of joinCondition
is “AND”. CN also has two forms, i.e., Concurrent Branch Node (CBN)
and Concurrent Merge Node (CMN).

In addition, the connection between activities defined in BPEL
can be characterized by XBFG edges which are classified into fol-
lowing two types:

• Control Edge (CE). It is created for control flow of XBFG nodes.
• Message Edge (ME). It is created for message exchange between

IN and SN.

Field is a determinative part in XBFG definition. It records related
information of each XBFG element to support further analysis. In
our approach, the following fields, namely, ID, Source, Target and
Category are required for all XBFG elements.

• ID field is used to identify the XBFG element and discover whether
its content has been changed. It is defined as a two-tuples 〈id,
hashcode〉. The sub field hashcode is a string array generated by a
hash function to check the changes of XML document (Maruyama
et al., 2012). BPEL specification is in fact a XML document. It is very
important to produce hashcode for each XBFG element during the
transforming process from BPEL to XBFG, because the change of
BPEL activities could be detected easily by comparing the hash-
code of elements in two XBFGs after transforming BPEL to XBFG.
Only those activities whose names, attributes and sub-elements
all are the same can be regarded as unchanged. The sub field id is
needed since hashcode cannot distinguish XBFG elements when
the same activity exists in the same BPEL document many times.
The value of id is a natural number generated according to the
hashcode and it is unique to serve as the identity of XBFG element.
We use ID . id to represents an XBFG element for short.

• Source (Target) field records the set of precedent (subsequent)
elements of a XBFG element where precedent (subsequent) ele-
ments are consisted of XBFG edges for an XBFG node or XBFG
nodes for a XBFG edge.

• Category field denotes the category of each XBFG elements. Its
value can be IN, SN, NN, EN, MN, CN, CE and ME.

Some XBFG elements have special fields:

• Name field represents the name of XBFG element. Its value is the
name attribute in the corresponding BPEL activity.

• PartnerLink field denotes the partner service that the element
interacts with. It only exists in IN and its value is name attribute
of partnerLink in the corresponding BPEL activity.

• Condition field denotes transition conditions (or predicate con-

straints) of the XBFG element. It exists in EN, MN, CN and CE, and
its value is condition attribute of corresponding BPEL structural
activity; but for the edge produced by link, its value is transi-
tionCondition attribute of link.

1 s and

•

•

•

t
e
i
f
t
t
(
i
o

4

(
(
(
(

f
n
c
l
a
f

•

•

•

•

306 B. Li et al. / The Journal of System

Endpoint field represents the binding address of XBFG element.
It only exists in SN and its value is the endpoint address of the
service.
PortType field and Operation field stipulate the interactive inter-
face between IN and SN. They only exist in IN and their values are
portType and operation attributes in the corresponding BPEL
activity.
InMsg field and OutMsg field define the type of interactive mes-
sages between BPEL process and partner services where the
former represents the message received by the process and the
latter represents the sent out message. They only exist in IN and
their value can only be acquired by analyzing the corresponding
WSDL document of partner service since information stored in
BPEL document is limited. More details are illustrated in part D
of this section.

In order to analyze control flow to capture transition informa-
ion of paths, it is necessary to add transition condition to those
dges starting from EDN. For example, let edn denotes an EDN,
f edn . condition = c, the values of condition of two outgoing edges
rom edn are c and ! c. In addition, if the value of attribute condi-
ion in if is isKnown ! = true, XBFG will be added with following
hree elements: (1) an EDN with condition value of isKnown ! = true;
2) one corresponding control edge with its condition value of
sKnown ! = true; (3) the other control edge with its condition value
f ! (isKnown ! = true).

.2. XBFG construction

The process of XBFG construction consists of four steps:

1) Create SNs for all partnerLinks.
2) Create other kinds of XBFG nodes for all BPEL activities.
3) Create ME according to interactive relation between IN and SN.
4) Create CE according to the relation of execution order among

XBFG nodes.

All steps are based on an analysis of BPEL document by trans-
orming all BPEL activities (including partnerLink) into XBFG
odes. The construction of XBFG edges is accompanied with the
onstruction of XBFG nodes. The transformation methods are high-
ighted below and Fig. 4 gives some typical transformations of BPEL
ctivity snippets for better understanding. We first give six trans-
ormation methods for basic activities (including partnerLink).

partnerLink. A SN sn is created where the value of sn . name is
attribute name of partnerLink. The value of sn . endpoint may
be the value of sub-element Address in partnerLink. It can
also be complemented by assign activity based on EndpointRe-
ference mechanism of WS-Addressing which is detailed in the
transformation of assign activity.
invoke activity. An IN in is created where the values of in . name
and in . partnerLink are attributes name and partnerLink of
invoke, respectively. Suppose the corresponding SN sn where
sn . name = in . partnerLink exists, if the value of attribute input-
Varibale in invoke is not empty, a ME me is created from in to sn
where me . source = in and me . target = sn; If the value of attribute
outputVariable in invoke is not empty, an ME me′ is created
from sn to in where me . source = sn and me . target = in.
receive activity. An IN in is created where the values of in . name
and in . partnerLink are attributes name and partnerLink of
receive, respectively. Suppose the corresponding SN sn where

sn . name = in . partnerLink exists, an ME me′ is created from sn to
in where me . source = sn and me . target = in.
reply activity. An IN in is created where the values of in . name
and in . partnerLink are attributes name and partnerLink of
 Software 85 (2012) 1300– 1324

reply, respectively. Suppose the corresponding SN sn where
sn . name = in . partnerLink exists, an ME me is created from in to
sn where me . source = in and me . target = sn.

• assign activity. A NN nn is created where the value of nn . name
is attribute name of sub-element copy in assign. If usage of this
activity is partnerLink assignment, we can find the corresponding
SN sn where sn . name is equal to attribute partnerLink of copy
and update the value of sn . endpoint according to sub-element
address in copy.

• wait activity. A NN nn is created where the value of nn . name is
attribute name of wait.

• empty activity. No XBFG node is created.
• rethrow activity. No XBFG node is created.
• extensionActivity activity. No XBFG node is created.

For structural activities, we mainly focus on the transformation
of the structure itself. So the transformations of basic activities that
are embodied in structural activities are not given here. We describe
eight transformation methods for structural activities below.

• sequence activity. Though no XBFG node is created here, we
traverse its sub-elements sequentially to form the sequence rela-
tions of sub-elements. CE is used to connect them if there is
a sequential relation between nodes corresponding to the two
sub-elements.

• scope activity. It is processed the same way as the sequence
activity.

• if activity. A pair of EN edn and emn is created where the value of
edn . name and edn . condition are attributes name and condition
of If, respectively. The first activity in If is set as the left child of
edn. If sub-element elseif exists in If, a new pair of EN edn′ and
emn′ is created for each elseif where the value of edn′ . condition
is attribute condition of elseif and the whole pair is set as the
right child of edn. In Fig. 5, the elseif whose condition is p = v2
becomes the right child of If whose condition is p = v1. When
more elseifs are included, each is processed the same way as
the first elseif and set as the right child of the prior elseif.
In addition, the activity in else is considered as the right child
of last elseif and all CE ces should be created according to the
branch relations.

• while activity. Only an EDN edn is created where the values of
edn . name and edn . condition are attributes name and condition
of while, respectively. In addition, a CE ce is created from the last
XBFG node in while to edn.

• forEach activity. Only an EDN edn is created where the value of
edn . name is attribute name of forEach. Mark attribute coun-
terName of forEach as cN, startCounterValue as vs, and
finalCounterValue as vf , then the value of edn . condition is
vs ≤ cN ≤ vf . In addition, a CE ce is created from the last XBFG
node in forEach to edn.

• repeatUntil activity. Only an EDN edn is created where the
values of edn . name and edn . condition are attributes name and
condition of repeatUntil, respectively. In addition, a CE ce is
created from edn to the first XBFG node in repeatUntil.

• pick activity. A pair of EN edn and emn is created where the value
of both edn . name and emn . name are attribute name of pick; An
IN in is created for each sub-element onMessage, where the value
of in . partnerLink is attribute partnerLink of onMessage. Sup-
pose the corresponding SN sn where sn . name = in . partnerLink
exists, a ME me is created from sn to in. In addition, a NN nn is
created for each sub-element onAlarm in pick.

• flow activity. A pair of CN cbn and cmn is created where the value

of both cbn . name and cmn . name are attribute name of flow; for
all BPEL basic activities synchronized by sub-element link in
flow, which can be usually transformed into NN or IN, check all
their sub-elements source and target. On the one hand, if s > 1

B. Li et al. / The Journal of Systems and Software 85 (2012) 1300– 1324 1307

Fig. 4. XBFG element construction for BPEL activities.

1308 B. Li et al. / The Journal of Systems and

Fig. 5. Transformation for multi-elseif in If Activity.

a
T
T
i
X
B
o
a
i

4

t
t
a

Each XBFG path can be started from the initial node of XBFG.
There are two cases: (1) path begins with an IN in when the process
Fig. 6. Transformation for Flow Activity with link.

(s denotes the number of sub-element target of current activity
act), namely, the node is the target node of many links, an MN
mn is created at the merge point of these links. The category
of mn is determined by the attribute joinCondition of the cur-
rent activity. If the bool expression in joinCondition contains
AND operator, mn.category=CMN. If the bool expression in join-
Condition contains OR operator, mn.category=MMN. If there is
no joinCondition, mn.category=MMN. It is noted that if act is
a part of structural activity (sequence as an example) and s>1,
a CMN cmn need to be created between mn and the subsequent
node of act, as shown in Fig. 6. On the other hand, if t > 1 (t denotes
the number of sub-elements source of current activity act), a CBN
cbn is created between act and the subsequent node of act.

To save space, we will not give the detailed algorithms for the
bove 14 transformations. Fig. 7(a) shows the XBFG of LCS v1.0.
he number attached near each XBFG element is its id in Field ID.
he id corresponds to the BPEL code number (shown in bracket)
n Fig. 1(a). We also list detailed field information of some typical
BFG elements in gray boxes. These information are extracted from
PEL code according to our transformation algorithms. The XBFG
f LCS v1.1 is also shown in Fig. 7(b). The modification of assign
ctivity in v1.0 is reflected in the newly generated XBFG node (with
d 46) and edges (with ids 47 and 48).

.3. XBFG path definition
Based on definition of XBFG model, the concept of XBFG path has
o be customized and redefined accordingly. The BFG path defini-
ion (Yuan et al., 2006) is similar to the traditional CFG path, which is

 sequence of nodes. However, this node sequence cannot support
 Software 85 (2012) 1300– 1324

a comprehensive change impact analysis of BPEL-based composite
service for the following reasons:

• BFG path mainly describes the sequential execution relations of
BPEL activities in the composite service to be tested while no spe-
cial path are included to describe the message exchange between
BPEL process and partner services, which is a special feature of
composite service.

• Relying solely on node sequences, BFG path cannot clearly depict
many kinds of structures in BPEL process, such as sequence, selec-
tion, loop, concurrency, synchronization, etc.

• BFG path comparison, which is often node sequence comparison,
cannot detect certain changes in the evolution in composite ser-
vice such as change of constraint condition in control flow and
change of message exchange between BPEL process and partner
services.

Thus, it is necessary to take XBFG edges into account in the
new path definition. Based on this consideration, XBFG path is
constructed from the nodes and edges visited according to their
orders in an execution of program. The execution order is implic-
itly encoded in source and target field of XBFG elements. As a result,
all XBFG paths in BPEL process can be obtained by analyzing the
information carried by XBFG elements.

4.3.1. XBFG path
To provide a clearer description of the XBFG path, we firstly

define its two subtypes, namely, in-process path and out-process
path, where the former depicts the internal behavior of the process,
and the latter considers the interactive behaviors between process
and partner services.

Definition 3 (In-process path). Let ip be a set that is composed of
XBFG Nodes (except SN) and CEs. It is called a XBFG in-process path
if the following conditions are satisfied:

• ∀xe ∈ ip, xe = n ∈ N or xe = ce ∈ CE where N is set of non-SN Nodes
and CE is the set of CEs.

• ∀ce ∈ ip, ∃n ∈ ip �→ n ∈ ce . target2

Definition 4 (Out-process path). Let op be a set that is composed
of SNs and MEs. It is called a XBFG out-process path if the following
conditions are satisfied:

• ∀xe ∈ op, xe = sn ∈ SN or xe = me ∈ ME where SN and ME are set of
SNs and MEs, respectively.

• ∀me ∈ op, if me is not the last ME of op, ∃sn ∈ SN �→ sn ∈ me . target.

XBFG path combines both in-process path and out-process path,
which can reflect the whole behavior of composite service. XBFG
path is defined as follows:

Definition 5 (XBFG path). Let xp be a set that is composed of a in-
process path ip and a set of out-process paths opi (1 ≤ i ≤ n). It is called
a XBFG path if the following conditions are satisfied:

• ∀xe ∈ xp, xe ∈ ip or xe ∈ opk(1 ≤ k ≤ n).
• ∀op ∈ xp, ∃in and me, in ∈ ip ∧ in ∈ IN and me ∈ op �→ me ∈ in . target

∨ me ∈ in . source.
2 We use notation ce ∈ ip to denote that ce is a control edge of XBFG in-process
path ip and n ∈ ip denotes that n is a node of in-process path ip. Similar notation is
used in Definitions 4 and 5.

s and

b
i
E

4

m
f
i
g

A

B. Li et al. / The Journal of System

egins with a start activity receive and will be activated by receiv-
ng a call message sent by partner service; (2) path begins with an
N edn when the process begins with start activity pick.

.3.2. XBFG path generation
Now we discuss how to generate XBFG path using the infor-

ation of source and target fields recorded in XBFG elements. It is
easible to find an XBFG path by traversing XBFG and composing
n-process paths and corresponding out-process paths. The whole
eneration process is depicted in Algorithm 1.

lgorithm 1. XBFG path generation.
Input p[count]: current XBFG path to be processed;
Input e: current XBFG element to be processed;
Output p[count]: all XBFG paths to be generated;
Variable op[mcount]: all XBFG out-process paths generated;
ProcessPath(p[count], e)
//termination condition of recursion
if e == null then

return
end if
if e.category == IN then

p[count] = p[count] ∪ {e};
for each ei ∈ e.source or e.target do

if ei.category == ME then
mcount + +;
create a new XBFG out-process path op[mcount];

end if
//create out-process path from ME
CreateOP(op[mcount], ei);
p[count] = p[count] ∪ op[mcount];

end for
for each ei ∈ e.target do

if ei.category! = ME then
ProcessPath(p[count], ei);

end if
end for

else if e.category == EDN then
p[count] = p[count] ∪ {e}
for each ei ∈ e.target do

if ei /∈ p[count]
pTemp = p[count];
if i > 1 then

count + +;
create a new XBFG path p[count];
P[count] = pTemp;

end if
end if
p[count] = p[count] ∪ {ei};
ProcessPath(p[count], ei)

end for
else if e.category == MBN then

p[count] = p[count] ∪ {e};
compute all combinations of e.target as set CS
for each csi ∈ CS do

pTemp = p[count];
if i > 1 then

count + +;
create a new XBFG path p[count];
p[count] = pTemp;

end if
end for
for each element ei ∈ csi do

p[count] = p[count] ∪ {ei}
ProcessPath(p[count], ei);

end for
else if e.category == CBN then

p[count] = p[count] ∪ {e}
for each successor ei ∈ e do

p[count] = p[count] ∪ {ei}
ProcessPath(p[count], ei);

end for

else if e.category == default then

p[count] = p[count] ∪ {e}
ProcessPath(p[count], e.target);

end if
 Software 85 (2012) 1300– 1324 1309

Before executing the XBFG path generation algorithm, all CE ces
that are originated from the start element s must be found. If the
number of ces is m, m paths p[i] (1 ≤ i ≤ m) are created where s is
included in all paths and cei in corresponding path p[i].

Suppose p[count] is the current XBFG path to be generated,
where count is a global variable for distinguishing the generated
paths. The format of p[count] is a sequence of XBFG elements,
p[count] = s· cecount · n · e · . . . (n and e are XBFG node and edge,
respectively).

Algorithm 1 works on different types of XBFG elements as fol-
lows:

• If the current element e is IN, it is added into p[count] at first.
Then out-process path op will be generated as follows: (1) Check
source (target) field of e to find all ME mes which are connected
to e; (2) Traverse backward (forward) along each me based on its
source (target) field till an IN in has been visited (here in may be
the same as e); (3) Add all traversed ME mes and SN sns into op.
Finally, all generated ops are added into p[count].

• If e is EDN with k branches, copy p[count]k − 1 times for generating
another k − 1 paths where each path represents a branch of the
execution path. Then add e and all CE starting from e into p[count]
and the other copied paths.

• If e is MBN, suppose that the out-degree of e is k, which means the
edges that are executed at the same time are at most k, there are
at most CS = C1

k
+ C1

k
+ · · · + Ck

k
= 2k − 1 kinds of execution order

after e has executed. So copy p[count] 2k − 2 times for generating
another 2k − 2 paths and add e into all 2k − 1 paths. Then each
path represents one of the 2k − 1 kinds of execution order. For
example, if a MBN mbn has three out-going edges, i.e., e1, e2 and
e3 (k = 3), seven paths (23 − 1) will be composed of p[i]: {mbn, e1},
{mbn, e2}, {mbn, e3}, {mbn, e1, e2}, {mbn, e1, e3}, {mbn, e2, e3},
{mbn, e1, e2, e3}.

• If e is CBN, we can use reachability testing (Lei and Carver, 2006)
to generate synchronization sequences within concurrent block
and further generate many execution paths, but these paths have
the same execution conditions and expected output for a given
input data. Therefore we can regard them as one path. Based on
this consideration, we add only e and all CE starting from e into
p[count].

• If e is NN or other kinds of elements such as CE (marked as default
in Algorithm 1, ME and SN are not included here for they are
considered in the first if-then-else block), e is added into p[count]
directly.

For the recursive Algorithm 1, we assume that the number of
XBFG elements to be processed is n. Suppose the time perfor-
mance of this algorithm for n XBFG elements is O(n), we have
O(n) = (n − 1) * O(n − 1) (We choose the most time-consuming block
to compute the recursive function). So the time complexity of
Algorithm 1 is O(n) = n !.

Fig. 7 lists all XBFG paths calculated for both v1.0 and v1.1 of
LCS. Field ID . id is used as the representation of each XBFG element.
Take v1.1 as an example, the path computation begins with the
start node (XBFG element 5); it traverses the XBFG according to the
source and target information of each XBFG element. The arrow lines
with number show the traverse sequence of the whole XBFG. When
we meet the IN (XBFG element 5), an out-process is created contain-
ing XBFG element 6, 1 and 28. The same handling is also applied for
XBFG element 8, 13 and 17. When we meet the CN (XBFG element

21), a specific order for concurrent branches is chosen at random.
Here the left branch is selected first. When we meet the EN (XBFG
element 25), a replicated XBFG path is created for handling the
branch statement. According to Algorithm 1, two XBFG paths are

1310 B. Li et al. / The Journal of Systems and Software 85 (2012) 1300– 1324

 servi

g
w

4

p
a
v
d
p
f
a
o

s
i
d
a
c
w
i
o
c
i
B
t

Fig. 7. The graphical XBFG of loan

enerated finally. Each XBFG path contains four out-process paths,
hich are marked in bold in the figure.

.4. XBFG message sequence

An XBFG path actually represents an execution trace of the com-
osite service. It records not only the behavior of inner-process but
lso the communication between the process and the invoked ser-
ices. However, the detailed information of such communication
epicted by BPEL document is limited. When the process invokes a
artner service, for example, only the information about the inter-
ace of partner service and message exchange pattern (MEP) can be
cquired from the BPEL document. We cannot get the concrete type
f input (output) variables that are delivered between services.

In Fig. 8, the v1.0 of LCS is represented by XBFG with all INs
hown in gray. The BPEL code snippets that are used for depict-
ng the service interaction are attached with each related IN. The
efinition of partnerLink in BPEL is also provided. Based on the
nalysis of BPEL document, we can only find out that the pro-
ess defined in LoanFlow.bpel interacts with the partner services
hose exposed interfaces are stored in LoanService.wsdl and Cred-

tRatingService.wsdl by In-Out (or Request-Response) MEP. So the
rder of input and output messages exchanged between services

an be used to reflect the interactive behavior, corresponding to
nputVariable and outputVariable in BPEL. By parsing the
PEL document, a variable sequence can be obtained as shown in
he middle section of Fig. 8. However, the concrete type of each
ce of Version 1.0 and Version 1.1.

variable is unknown as this information is not available from BPEL.
So it is necessary to import corresponding WSDL documents that
contain complete definition of message type to extract the miss-
ing information. Message defined in WSDL document contains two
attributes, name and part where the former represents the name
of message type and the latter represents the concrete type of mes-
sage. We define message as follows:

Definition 6 (Message). Message is defined as a triple M = 〈N, T,
IN〉 where N is a string that represents the name of message, T is
the concrete type of message. IN is a bool variable that represents
the message transfer direction where true represents M is an In-
Message and false represents M is Out-Message.

Here, T can be either an XSD (XML Schema Definition) built-in
type or user-defined complex type. IN-Message is used to represent
the message received by the process while Out-Message is used
to represent the message delivered from the process to partner
service.

Fig. 8 depicts the procedure to obtain the full definition of mes-
sage by locating and parsing the corresponding WSDLs of partner
services or composite services. We take the inputVariable cnIn-
put that is contained in the first invoke activity (corresponding
to the XBFG element with ID.id 8) as an example to illustrate how

to find the true type of the messages. Through the name of part-
nerLink, portType and operation in the same invoke activity,
we can locate the complete definition of message CreditRatingSer-
viceRequest in CreditRatingService.wsdl which contains the type

B. Li et al. / The Journal of Systems and Software 85 (2012) 1300– 1324 1311

sage s

s
l
t
t
w
i
o
m
a
i

s
i

Fig. 8. The process of generating the mes

pecification of cnInput. The dashed arrow shows the process of
ocating message in Fig. 8. Then, by further analysis of the part in
he located message CreditRatingServiceRequest, we can get the
ype information that cnInput is a string in XSD build-in types
here both of them are shown in gray background. All related

nformation of inputVariable cnInput is listed in the second row
f Table 3. The other messages and their concrete type are also
arked in the same color in Fig. 8 and their detailed information is

lso listed in Table 3. (For interpretation of the references to color

n text, the reader is referred to the web version of this article.)

It must be noted that the parsed message types could be used to
upplement the fields InMsg and OutMsg of each IN which will be
mportant for XBFG message sequence generation later.
equence from BPEL and WSDL document.

An XBFG message sequence is attached to each XBFG path as a
supplementary description of interactive behavior. It records the
concrete message streams delivered between process and partner
services. Message sequence is defined as follows:

Definition 7 (Message sequence). Let ms be a set that is composed
of messages. It is called a message sequence for the corresponding
XBFG path p if the following conditions are satisfied:
• ∀m ∈ ms, ∃xe ∈ p and xe ∈ IN, m = xe . InMsg or m = xe . OutMsg

The process to generate XBFG message sequence is not very com-
plex. For each XBFG path, we search all the INs in this path and

1312 B. Li et al. / The Journal of Systems and Software 85 (2012) 1300– 1324

Table 3
Detailed message type of message sequence of v1.0.

Variable PartnerLink PortType Operation Message Type

?input client LoanFlow initiate LoanFlowRequestMessage (String, Boolean, Boolean,
Double)

!crInput creditRatingService CreditRatingService process CreditRatingServiceRequestMessage String
?crOutput creditRatingService CreditRatingService process CreditRatingServiceResponseMesage Int
!loanApplication StarLoanService LoanService initiate LoanServiceRequestMessage (String, Boolean, Boolean,

Double)
?loanOffer2 StarLoanService LoanServiceCallback onResult LoanServiceResultMessage (String, String, String,

Double, String, String, Int)
!loanApplication UnitedLoanService LoanService initiate LoanServiceRequestMessage (String, Boolean, Boolean,

Double)
?loanOffer1 UnitedLoanService LoanServiceCallback onResult LoanServiceResultMessage (String, String, String,

Double, String, String, Int)
!selectedLoanOffer client LoanFlowCallback onResult LoanFlowResultMessage (String, String, String,

Double, String, String, Int)

Boolea
e, Stri

c
o
b
t
o
w
t

5

c
b
c
i
e
s
i
s
a
g
a
k
s
r
c
t
c
a

i

5

p
t

S

t
r

G

Message sequence: ?(String,Boolean,Boolean,Double), !String, ?Int, !(String,
Boolean, Boolean, Double), ?(String, String, String, Doubl

ollect the information of fields InMsg and OutMsg according to the
ccurrence order of IN. Table 3 shows the message sequence for
oth XBFG paths in v1.0 of LCS where “?” represents the IN-Message
ype and “!” represents the Out-Message type. Detailed description
f each message in this message sequence is shown in this table
here the type with parentheses represents user-defined complex

ype and the one without parentheses represents XSD build-in type.

. Test case selection

In this section, we will discuss how to select test cases for a
hange of composite service. Any change of composite service can
e reflected in the change of XBFG paths. For example, process
hange can be detected by comparing the fields of XBFG elements
n different versions. Binding change can be found by checking the
ndpoint filed of corresponding SNs. So the problem of test case
election is transformed into a XBFG comparison problem which
s consisted of XBFG path comparison and corresponding message
equence comparison where the former covers the process change
nd binding change while the latter covers the interface change. The
oal of XBFG comparison is to identify the modified path that is
ffected by the service modification. Modified path involves two
inds of paths, one is old path on which test cases in baseline ver-
ion can be selected to re-run, and the other is new path which
equires new test cases to be generated. After the comparison, path
ondition analysis is introduced to reduce the number of generated
est cases for new path since many test cases in the baseline version
an be adopted if the path condition of new path equals to that of
n old path.

To define the test case selection, some formal notations are
ntroduced first.

.1. Notations and basic ideas

Let S[1], . . ., S[i], . . ., S[n] denote n different versions of a com-
osite service, respectively, and �S[i] denote the change from S[i]
o S[i + 1], then we have

[i + 1] = S[i] + �S[i] (1 ≤ i ≤ n − 1)

Let G[i] be the XBFG model generated from S[i] and �G[i] denote

he change from G[i] to G[i + 1], then according to the mapping
elation from composite service to XBFG we have

[i + 1] = G[i] + �G[i] (1 ≤ i ≤ n − 1)
n,Boolean,Double), ?(String, String, String, Double, String, String, Int), !(String,
ng, String, Int),!(String, String, String, Double, String, String, Int)

Furthermore, let �S[i]pc, �S[i]bc and �S[i]ic denote process
change, binding change and interface change from Si to Si+1, respec-
tively, then we have

�S[i] = �S[i]pc ∪ �S[i]bc ∪ �S[i]ic

Accordingly, let �G[i]pc, �G[i]bc and �G[i]ic denote correspond-
ing types of changes from G[i] to G[i + 1], respectively, in XBFG
model, then we have

�G[i] = �G[i]pc ∪ �G[i]bc ∪ �G[i]ic

Suppose P[i] represent all XBFG paths of G[i] where P[i] . size rep-
resents the number of P[i] paths. For each XBFG path p[i] ∈ P[i],
it is consisted of a in-process path inp[i] and a set of out-
process paths outp[i]k(0 ≤ k ≤ n). We define out-process path set
outp[i] = outp[i]1 ∪ · · · ∪ outp[i]n. So we have p[i] = inp[i] ∪ outp[i]. Let
ms[i] be the message sequence for p[i], we have

ms[i] =
⋃e.category=IN

∀e∈p[i]
(e.InMsg ∪ e.OutMsg)

Suppose P[i + 1] represent all XBFG paths of G[i + 1] and P[i + 1]s

is the modified path of G[i + 1]. Obviously, we have P[i + 1]s ⊆ P[i + 1].
Let P[i + 1]s

pc , P[i + 1]s
bc and P[i + 1]s

ic denote the set of XBFG paths
of G[i + 1] influenced by process change, binding change and interface
change, respectively, then we have

P[i + 1]s = P[i + 1]s
pc ∪ P[i + 1]s

bc ∪ P[i + 1]s
ic

Consider S[i] and S[i + 1] are two versions of composite services
where P[i] is all XBFG paths of G[i] and P[i + 1] is all XBFG paths of
G[i + 1]. For some XBFG path pk[i] ∈ P[i] and the corresponding path
pk[i + 1] ∈ P[i + 1], there exist three path relations as follows:

• pk[i + 1] is control equals with pk[i] iff for each XBFG ele-
ment e[i] ∈ pk[i] and corresponding element e[i + 1] ∈ pk[i + 1],
e[i] = e[i + 1], which is marked as pk[i + 1] c=pk[i].

• pk[i + 1] is message equals with pk[i] iff for each message
type m[i] ∈ msk[i] and corresponding element m[i + 1] ∈ msk[i + 1],
m[i] = m[i + 1], which is marked as pk[i + 1]m=pk[i].

• p[i + 1] is equals with p[i] iff p[i + 1] c=p[i] and p[i + 1]m=p[i] which
is marked as p[i + 1] ≡ p[i].

Now, the three kinds of change type mentioned in Section 3.2

can be defined in terms of the path relations.

• Process Change happens when the following alternative condi-
tions are satisfied:

B. Li et al. / The Journal of Systems and

Table 4
Test tables for test case selection.

(a) Mapping from one test case to multi XBFG paths
Test case XBFG paths

t˛[i] P˛[i] = {pa[i], pb[i], · · · , pm[i]}
tˇ[i] Pˇ[i] = {pp[i], pq[i], · · · , pz[i]}
· · · · · ·

(b) Mapping from one XBFG path to multi test cases
XBFG path Test cases

•

•

o

P

P

P

p
a
t
T
w

T

w

w
t
e
s
i

p
h

T

i
p
i

T

S

1

p[i + 1] = p[i] − Np[i]
del

and p[i + 1] ∈ P[i + 1], add p[i + 1] into P[i + 1]sn.
Algorithm 2 describes the process for computing P[i + 1]so and
P[i + 1]sn. Suppose the number of XBFG elements in p[i] is n and
pa[i] Ta[i] = {t˛[i], t� [i], · · · , t�[i]}
pb[i] Tb[i] = {tˇ[i], tı[i], · · · , tϕ[i]}
· · · · · ·

– P[i + 1] . size /= P[i] . size

– ∃pk[i + 1] ∈ P[i + 1], pk[i] ∈ P[i], s.t. pk[i + 1]
c
/= pk[i].

Binding Change happens when ∃el[i + 1] ∈ outpk[i + 1] ∈ p[i + 1] ∈
P[i + 1], ∃el[i] ∈ outpk[i] ∈ p[i] ∈ P[i], s.t. el[i + 1] . partnerLink /=
e l[i] . partnerLink
Interface Change happens when ∃pk[i + 1] ∈ P[i + 1], pk[i] ∈ P[i],

s.t. pk[i + 1]
m
/= pk[i]

Since all three types of changes can be reflected in the changes
f XBFG paths, there must exist a mapping ϕ that satisfies:

[i + 1]s
pc = ϕ(�P[i]pc)

[i + 1]s
bc = ϕ(�P[i]bc)

[i + 1]s
ic = ϕ(�P[i]ic)

As discussed before, modified paths P[i + 1]s may come from old
aths in G[i], denoted as P[i + 1]so, and new paths in G[i + 1], denoted
s P[i + 1]sn. Suppose T[i] is the test suite of S[i], T[i + 1] consists of
wo groups: T[i + 1]so that re-test P[i + 1]so selected from T[i] and
[i + 1]sn that test P[i + 1]sn which need to be newly generated. So
e have

[i + 1] = T[i + 1]so ∪ T[i + 1]sn

here T[i + 1]so ∈ T[i].
For each test case tk[i] ∈ T[i], Pk[i] is a path set that tk[i] covers,

here Pk[i] ∈ P[i]. This mapping relation can be described by a test
able (Benedusi et al., 2002) as shown in Table 4(a). We can also
asily obtain the reverse mapping from XBFG path to test cases, as
hown in Table 4(b). For each XBFG path pk[i] ∈ P[i], a test suite Tk[i]
s attached to test pk[i] where Tk[i] ∈ T[i].

Therefore, there should be a test suite Tk[i + 1]so for each path
k[i + 1]so to be retested in G[i + 1], where Tk[i + 1]so ∈ T[i + 1]. So we
ave

[i + 1]so =
⋃pk[i+1]so∈P[i+1]so

∀pk[i+1]so
Tk[i + 1]so

For each XBFG path pk[i + 1]so ∈ P[i + 1], we can find a correspond-
ng XBFG path pj[i] that pj[i] ≡ pk[i + 1]. So the test suite Tk[i + 1] for
k[i + 1]so can be totally obtained from test suite Tj[i] for pj[i]. That
s,

[i + 1]so =
⋃pj[i]≡∈Pk[i+1]so

∀pk[i+1]so∈P[i+1]so,∃pj[i]∈P[i]
Tj[i]

so

The steps for performing test case selection on S[i + 1] against

[i] are as follows:

) XBFG path comparison. The main task is to compare the paths
in P[i] and P[i + 1] one by one to get P[i + 1]s

pc and P[i + 1]s
bc .
 Software 85 (2012) 1300– 1324 1313

Some of the paths in P[i + 1]s
pc are old paths in P[i], denoted as

P[i + 1]so
pc , others are new paths, denoted as P[i + 1]sn

pc . All the
paths in P[i + 1]s

bc are the same as paths in P[i]. So move all mem-
bers in P[i + 1]so

pc and P[i + 1]s
bc into P[i + 1]so, and all members of

P[i + 1]sn
pc into P[i + 1]sn.

2) Message sequence comparison. The main task is to compare
the interfaces of each path in P[i + 1]so with the correspond-
ing path in P[i] one by one. If some of the interfaces are found
different, which indicates that new test cases are required for
testing these paths, the corresponding paths need to be moved
to P[i + 1]sn. Then, do comparison on the interfaces of each path
in {P[i + 1] − P[i + 1]so − P[i + 1]sn} with the corresponding path in
P[i] (e.g. ∀p[i + 1] ∈ P[i + 1] − P[i + 1]so − P[i + 1]sn and correspond-
ing p[i] ∈ P[i], p[i + 1] c=p[i]) to find out paths with interfaces
change and move them to P[i + 1]sn.

3) Path condition analysis. The main task is to generate path con-
dition for P[i] and P[i + 1]sn which has been updated in step (2).
If ∃ pk[i + 1] ∈ P[i + 1]sn and ∃ pl[i] ∈ P[i] where path condition of
pk[i + 1] is the same as one of pl[i], test suite Tl[i] that is attached
to pl[i] can also be used as the test suite for pk[i + 1]. So move all
pk[i + 1] from P[i + 1]sn to P[i + 1]so.

4) Test case selection. The main task is to select test cases from T[i].
We can search all paths pk[i + 1] ∈ P[i + 1]so in test table to find all
re-usable test cases and add them into T[i + 1]so.

The following three sections will present the first three steps in
more details.

5.2. XBFG path comparison

The purpose of XBFG path comparison is to find the path affected
by process change and binding change. The path that has process
change, namely new path, should be moved to P[i + 1]sn. And the
path that has binding change but no process change, namely old path,
should be moved to P[i + 1]so.

As each XBFG element has an identity field ID, the set of modified
elements can be obtained by comparing ID of each element e in
N[i] (the set of elements in G[i]) and N[i + 1] (the set of elements in
G[i + 1]).

There are two cases for modified elements:

• If element e /∈ N[i] ∧ e ∈ N[i + 1], we regard e as a new element that
has been added into the new version.

• If element e ∈ N[i] ∧ e /∈ N[i + 1], we regard e as an element that has
been deleted from the old version.

Let N[i + 1]add be a set of new elements added to N[i + 1] and
N[i + 1]′add be copy of N[i + 1]add without elements whose category
field is SN or ME. For each element eadd ∈ N[i + 1]add, search all the
paths which contain element eadd and move them into P[i + 1]s. For
each element e′

add
∈ N[i + 1]′add, search all the paths which con-

tain element e′
add

and move them into P[i + 1]sn. So we can get
P[i + 1]so = P[i + 1]s − P[i + 1]sn. Let N[i]del be a set of elements deleted
from N[i]. For each p[i] ∈ P[i], let Np[i]

del
denote the set of all ele-

ments deleted from p[i], then we have N[i]del = ∪∀p[i]∈P[i]N
p[i]
del

. If
in p[i + 1] is m (n and m are in the same order of magnitude since
the number of modification from the old version to the new ver-
sion should be limited), the time complexity of Algorithm 2 is
O(2 * n) + O(n2) + O(n2) + O(n2) ≈ O(n2).

1 s and

A

5

p
fi
d
a
p
t
s
1
p
w
T
i
a
t
i
m
P

a
i
m
o

a function. Let exp denote the expression, op denote the operand
and op ∈ { = , > , > = , < , ≤ , ! = , ! }. There are three kinds of predicate
constraints in XML Schema:
314 B. Li et al. / The Journal of System

lgorithm 2. Path comparison algorithm.
Input P[i], P[i + 1]: set of paths to be compared;
Input N[i], N[i + 1]: set of elements in P[i] and P[i + 1];
Output P[i + 1]so: set of old paths;
Output P[i + 1]sn: set of new paths;
PathComparison(P[i], P[i + 1], N[i], N[i + 1])
Let Nall = N[i] ∪ N[i + 1]
for each element e ∈ Nall do

if e /∈ N[i] ∧ e ∈ N[i + 1] then
N[i + 1]add = N[i + 1]add ∪ {e}
if n.category! = SN & & n.category! = ME) then

N[i + 1]′
add = N[i + 1]′

add ∪ {e}
end if

else if e ∈ N[i] ∧ e /∈ N[i + 1] then
N[i]del = N[i]del ∪ {e}

end if
end for
for each element nadd ∈ N[i + 1]add do

for each element of p[i + 1] ∈ P[i + 1] do
if nadd ∈ p[i + 1] then

P[i + 1]s = P[i + 1]s ∪ {p[i + 1]}
end if

end for
end for
for each element n′

add
∈ N[i + 1]′

add do
for each element of p[i + 1] ∈ P[i + 1] do

if n′
add

∈ p[i + 1] then
P[i + 1]sn = P[i + 1]sn ∪ {p[i + 1]}

end if
end for

end for
P[i + 1]so = P[i + 1]s \ P[i + 1]sn

for each p[i] ∈ P[i] do
for each n[i]del ∈ N[i]del do

if n[i]del ∈ p[i] then
Np[i]

del
= Np[i]

del
∪ {n[i]del}

end if
end for
if p[i + 1] = (p[i] − Np[i]

del
) ∈ P[i + 1]

P[i + 1]sn = P[i + 1]sn ∪ {p[i + 1]}
end if

end for
Return P[i + 1]so , P[i + 1]sn

.3. Message sequence comparison

The purpose of message sequence comparison is to find the XBFG
ath affected by interface change as XBFG path comparison can only
nd those influenced by process change and binding change. As is
iscussed in Section 4.4, message sequence comparison is actually

 procedure of comparing message types of each XBFG path. Let
[i] be a path of G[i] and p[i + 1] be a path of G[i + 1]. Consider
he path pair p[i] and p[i + 1], each of which is composed of the
ame XBFG elements. After XBFG path comparison, we have pk[i +
] c=pk[i]. Let ms[i] and ms[i + 1] denote message sequence of p[i] and
[i + 1], respectively. Suppose ms[i] = m1[i]m2[i] . . . mi[i] . . . mn[i]
here mi[i] represents the message in message sequence of p[i].

hen the message sequence comparison can be performed by check-
ng the type of all message pairs mk[i] and mk[i + 1] from ms[i]
nd ms[i + 1], respectively. The comparison will terminate if the
ype of one message is different from that of the other one

n the pair. If the result indicates that ms[i] is not equal to

s[i + 1], we need to move the corresponding XBFG path p[i + 1] to
[i + 1]sn.

Algorithm 3 presents the details of message sequence gener-
tion and comparison, where the message sequence generation
s based on Section 4.4. Suppose the number of XBFG ele-

ents in p[i] is n, the time complexity of Algorithm 3 is O(n)
bviously.
 Software 85 (2012) 1300– 1324

Algorithm 3. Message sequence generation and comparison algo-
rithm.

Input p[i], p[i + 1]: two XBFG paths to be compared based on message sequences
Output result: comparison result of p[i] and p[i + 1]
MessageSequenceComparison(p[i], p[i + 1])
// Message Sequence Generation
for each element e[i] ∈ p[i] do

if e[i].category == IN then
if e[i].InMsg! = null then

ms[i] = ms[i] ∪ {e[i].InMsg}
end if
if e[i].OutMsg! = null then

ms[i] = ms[i] ∪ {e[i].OutMsg}
end if

end if
end for
for each element e[i + 1] ∈ p[i + 1] do

if e[i + 1].category == IN then
if e[i + 1].InMsg! = null then

ms[i + 1] = ms[i + 1] ∪ {e[i + 1].InMsg}
end if
if e[i + 1].OutMsg! = null then

ms[i + 1] = ms[i + 1] ∪ {e[i + 1].OutMsg}
end if

end if
end for
// Message Sequence Comparison
result = false
for each message pair (mk[i] ∈ ms[i], mk[i + 1] ∈ ms[i + 1]) do
if mk[i]! = mk[i + 1]

result = false
break

end if
end for
return result

5.4. Path condition analysis

After XBFG paths and message sequences are compared, paths
to be retested have been divided into two groups: (1) old path in
P[i + 1]so that does not need new test cases for regression testing;
(2) new path in P[i + 1]sn that needs new test cases for regression
testing. In order to make full use of test cases from the base-
line version and avoid redundant test case generation, we adopt
the principle of predicate logic and compare path conditions of two
versions. If they can be proven to be identical, the test cases
required for new path can be selected from those in the baseline
version.

In CFG of traditional structural program, the predicate con-
straints of a path come from branch nodes. It is effective to analyze
predicates of all branch nodes when we want to determine the
predicate constraint expression of a path, A BPEL program is in
fact also a structured program while a BPEL flow is more com-
plex because some new mechanisms, such as control dependencies
and dead path elimination are introduced3. The predicate con-
straints in BPEL come from not only branch nodes, but also merge
nodes.

The condition field of a XBFG element records predicate con-
straint (also called prc in short). It is composed of two parts, i.e.,
expressions and operands. In BPEL, expression may be a variable or
3 When a target activity is not performed due to the value of the 〈joinCondition〉
(implicit or explicit) being false, its outgoing links MUST be assigned a false sta-
tus according to some rules and Link Semantics. This has the effect of propagating
false link status transitively along entire paths formed by successive links until a
join condition is reached that evaluates to true. This approach is called Dead-Path
Elimination (DPE) (Alves et al., 2007).

B. Li et al. / The Journal of Systems and Software 85 (2012) 1300– 1324 1315

Table 5
Subject program and statistics.

Version Loc of BPEL Activity WSDL spec Message

v1.0 274 14 2 8
v1.1 274 14 2 8

1

2

3

M
i
n
p
p

w
t
p
w
S

w
B
i
s
a
r

F
a
b

f
i
p
i
c

c
t
t
c
L
p

p

w

p
p
i
p

v1.2 274 14

v1.3 274 14

v2.0 490 24

) Boolean prc. Its general format is op exp1, where exp1 is an expres-
sion, the value of which is a Boolean data, op ∈ { ! }.

) Numeric prc. Its general format is exp1 op exp2, where exp1 and
exp2 are expressions, the values of which are numeric data,
op ∈ { = , > , > = , < , < = , ! = }.

) String prc. Its general format is exp1 op exp2, where exp1 and
exp2 are expressions, the values of which are string data,
op ∈ { = , ! = }.

According to the classification of XBFG elements, EDN, EMN,
BN, MMN, CBN, CMN and CE may have condition fields. But pred-

cate constraints only exist in those CEs whose sources are branch
odes and in those whose targets are merge nodes. Therefore,
redicates can be further divided into branch predicate and merge
redicate.

Branch predicate is defined as a condition expression attached
ith XBFG branch nodes for determining which CEs are used in

he next execution step. As we mentioned in Section 2, the branch
redicate is fetched from condition sub-element nested in if,
hile and repeatUntil. The predicate can be Boolean, Numeric or
tring type.

Merge predicate is defined as a condition expression attached
ith XBFG merge nodes for determining which CEs are merged.
PEL designs joinCondition for synchronization of several activ-

ties by evaluating link status. A link generally has three kinds of
tatuses: true, false and unset. Merge predicate is of the type Boolean,
nd its expression is the same as the name of link, which could be
egarded as a variable.

Formally, predicate constraint is defined as a triple prc =< EP, PT,
 >, where EP is the constraint expression, PT is the predicate type
nd PT={Boolean,Numeric,String}, F denotes how prc will be com-
ined in path condition and F={AND,OR}.

Suppose prc[i] and prc[i + 1] are two predicate constraints
or XBFG path p[i] and p[i + 1], respectively, prc[i] = prc[i + 1]
ff prc[i] . EP = = prc[i + 1] . EP && prc[i] . PT = = prc[i + 1] . PT &&
rc[i] . F = = prc[i + 1] . F. That is, two predicate constraints are
dentical only if their constraint expressions, predicate types and
onjunction are all the same.

Path condition (also called pac) is a vector containing predicate
onstraints of the path. The way of identifying path condition is first
o collect all the predicate constraints in the path before combining
hem together. As predicate constraints are bound with CE, path
ondition can be collected by traversing all CEs in the XBFG paths.
et pac[i] denote the path condition of p[i], cek[i] denote any CE in
[i], then

ac[i] = ∪n
k=1{cek[i].prc[i]|cek[i] ∈ p[i]}
here n denotes the number of CEs in p[i].
Two path conditions pac[i] and pac[i + 1] of XBFG path p[i] and

[i + 1] are identical if and only if for each prc[i + 1] in pac[i + 1] and
rc[i] in pac[i], prc[i] = prc[i + 1]. Algorithm 4 describes the compar-
son of path conditions. As the number of XBFG elements in XBFG
ath p[i] is n, the time complexity of Algorithm 4 is O(n2) (Table 5).
2 8
2 8
5 13

Algorithm 4. Path condition comparison algorithm.
Input p[i], p[i + 1]: paths to be compared based on path condition
Output result: comparison result of p[i] and p[i + 1]
PathConditionComparison(p[i], p[i+1])
if p[i].pac[i].size! = p[i + 1].pac[i + 1].size then

Return false
end if
for each prc[i] in p[i].pac[i] then

prc[i].isMatch = false
end for
for each prc[i + 1] in p[i + 1].pac[i + 1] then

prc[i + 1].isMatch = false
end for
for each prc[i] in p[i].pac[i] do

for each prc[i + 1] in p[i + 1].pac[i + 1] do
if prc[i].isMatch = false & & prc[i].EP == prc[i + 1].EP & &

prc[i].PT == prc[i + 1].PT & & prc[i].F == prc[i + 1].F then
(prc[i + 1].isMatch = prc[i].isMatch) = true

end if
end for

end for
for each prc[i + 1] in p[i + 1].pac[i + 1] do

if prc[i + 1].isMatch == false then
result = false

end if
result = true
Return result
end for

5.5. A simple case study

For LCS, we have obtained all XBFG paths and correspond-
ing message sequences of v1.0 and v1.1 based on our approach
of Sections 4.3 and 4.4. Let P[1.0] = {p1[1.0], p2[1.0]} denotes the
set of XBFG paths in v1.0, the details of p1[1.0] and p2[1.0]
are shown in Table 6. Let MS[1.0] = {ms1[1.0], ms2[1.0]} denote
the set of XBFG message sequences in v1.0, where ms1[1.0] and
ms2[1.0] are corresponding message sequences of p1[1.0] and
p2[1.0], respectively. The details of ms1[1.0] and ms2[1.0] are shown
in Table 7 where we can see that ms1[1.0] = ms2[1.0]. Similarly,
let PC[1.0] = {pc1[1.0], pc2[1.0]} denote the set of path conditions
in v1.0, where pc1[1.0] and pc2[1.0] are corresponding path con-
ditions of p1[1.0] and p2[1.0]. Details of pc1[1.0] and pc2[1.0] are
shown in Table 8. For v1.1 of LCS, we use the similar naming rules
to label all XBFG paths, message sequences and path conditions.
Details of P[1.1] = {p1[1.1], p2[1.1]}, MS[1.1] = {ms1[1.1], ms2[1.1]}
and PC[1.1] = {pc1[1.1], pc2[1.1]} are also shown in Tables 6, 7 and
8, respectively.

Applying Algorithm 2 of XBFG path comparison, we have

p1[1.1]
c
/= p1[1.0]

while

p2[1.1] c=p2[1.0]
This means that the XBFG path p1[1.1] should be put into the old
path set P[1.1]so and the modified path set P[1.1]s simultaneously.
The next step is to find out whether any path in P[1.1]so should be

1316 B. Li et al. / The Journal of Systems and Software 85 (2012) 1300– 1324

Table 6
XBFG paths of all five versions of LCS.

Ref. XBFG path

p1[1.0] 5,6,1,28,29,7,30,8,9,2,10,31,11,32,12,33,21,34,13,14,3,16,35,15,36,22,37,17,18,4,20,38,19,39,40,25,41,23,42,26,45,27
p2[1.0] 5,6,1,28,29,7,30,8,9,10,2,31,11,32,12,33,21,34,13,14,3,16,35,15,36,22,37,17,18,4,20,38,19,39,40,25,43,24,44,26,45,27
p1[1.1] 5,6,1,28,29,7,30,8,9,2,10,31,11,32,12,33,21,34,13,14,3,16,35,15,36,22,37,17,18,4,20,38,19,39,40,25,47,46,48,26,45,27
p2[1.1] 5,6,1,28,29,7,30,8,9,2,10,31,11,32,12,33,21,34,13,14,3,16,35,15,36,22,37,17,18,4,20,38,19,39,40,25,43,24,44,26,45,27
p1[1.2] 5,6,1,28,29,7,30,8,47,46,48,31,11,32,12,33,21,34,13,14,3,16,35,15,36,22,37,17,18,4,20,38,19,39,40,25,41,23,42,26,45,27
p2[1.2] 5,6,1,28,29,7,30,8,47,46,48,31,11,32,12,33,21,34,13,14,3,16,35,15,36,22,37,17,18,4,20,38,19,39,40,25,43,24,44,26,45,27
p1[1.3] 5,6,1,28,29,7,30,8,9,2,10,31,11,32,12,33,21,34,13,14,3,16,35,15,36,22,37,17,18,4,20,38,19,39,40,25,41,23,42,26,45,27
p2[1.3] 5,6,1,28,29,7,30,8,9,10,2,31,11,32,12,33,21,34,13,14,3,16,35,15,36,22,37,17,18,4,20,38,19,39,40,25,43,24,44,26,45,27
p1[2.0] 5,6,1,28,66,48,67,49,50,46,51,68,52,69,7,30,8,9,2,10,31,11,32,12,33,21,34,13,14,3,16,35,15,36,22,37,17,18,4,20,38,19,39,40,25,41,23,42,26,70,55,71,56,

72,57,58,47,59,61,73,60,74,64,75,62,76,65,79,27
p2[2.0] 5,6,1,28,66,48,67,49,50,46,51,68,52,69,7,30,8,9,2,10,31,11,32,12,33,21,34,13,14,3,16,35,15,36,22,37,17,18,4,20,38,19,39,40,25,43,24,44,26,70,55,71,56,

72,57,58,47,59,61,73,60,74,64,75,62,76,65,79,27
p3[2.0] 5,6,1,28,66,48,67,49,50,46,51,68,52,69,7,30,8,9,2,10,31,11,32,12,33,21,34,13,14,3,16,35,15,36,22,37,17,18,4,20,38,19,39,40,25,41,23,42,26,70,55,71,56,

72,57,58,47,59,61,73,60,74,64,77,63,78,65,79,27
p4[2.0] 5,6,1,28,66,48,67,49,50,46,51,68,52,69,7,30,8,9,2,10,31,11,32,12,33,21,34,13,14,3,16,35,15,36,22,37,17,18,4,20,38,19,39,40,25,43,24,44,26,70,55,71,56,

72,57,58,47,59,61,73,60,74,64,77,63,78,65,79,27

Table 7
Message sequences for corresponding XBFG paths of all five versions.

Ref.a Message sequence

ms1[1.0] ?(String,Boolean,Boolean,Double) → !String → ?Int → !(String,Boolean,Boolean,Double) → !(String,Boolean,Boolean, Double) → ?(String,String,
String,Double,String,String,Int) → ?(String,String,String,Double,String,String,Int) → !(String, String,String,Double,String,String,Int)

ms2[1.0]
ms1[1.1] ?(String,Boolean,Boolean,Double) → !String → ?Int → !(String,Boolean,Boolean,Double) → !(String,Boolean,Boolean, Double) → ?(String,String,

String,Double,String,String,Int) → ?(String,String,String,Double,String,String,Int) → !(String, String,String,Double,String,String,Int)
ms2[1.1]
ms1[1.2] ?(String,Boolean,Boolean,Double) → !String → ?Int → !(String,Boolean,Boolean,Double) → !(String,Boolean,Boolean, Double) → ?(String,String,

String,Double,String,String,Int) → ?(String,String,String,Double,String,String,Int) → !(String, String,String,Double,String,String,Int)
ms2[1.2]
ms1[1.3] ?(String,Boolean,Boolean,Double) → !String → ?Int → !(String,Boolean,Boolean,Double) → !(String,Boolean,Boolean,Double) → ?(String,String,

String,Double,String,String,Double) → ?(String,String,String,Double,String,String,Double) → !(String,String,String,Double,String,String,Double)
ms2[1.3]
ms1[2.0] ?(String,Boolean,Boolean,Double) → !String → ?String → !String → ?Int → !(String,Boolean,Boolean,Double) →

!(String,Boolean,Boolean,Double) → ?(String,String,String,Double,String,String,Int) → ?(String,String,String,Double,String,String,Int) →
!initiateTaskMessageb → ?initiate- TaskResponseMessageb → ?taskMessageb → !(String,String,String,Double,String,String,Int)

ms2[2.0]
ms3[2.0]
ms4[2.0]

a The reference of message sequence msi[version] is attached with XBFG path pi[version].
b The concrete types of marked message are ignored here for saving the space since the definition of these complexType is too complicated.

Table 8
Path conditions for corresponding XBFG paths of all five versions.

Ref.a Path condition

Predicate constraint Constraint expression Predicate type F

pc1[1.0] prc1[1.0] getVariableData(‘loanOffer1’)>getVariableData(‘loanOffer2’) Numeric AND
pc2[1.0] prc2[1.0] getVariableData(‘loanOffer1’)≤getVariableData(‘loanOffer2’) Numeric AND
pc1[1.1] prc1[1.1] getVariableData(‘loanOffer1’)>getVariableData(‘loanOffer2’) Numeric AND
pc2[1.1] prc2[1.1] getVariableData(‘loanOffer1’)≤getVariableData(‘loanOffer2’) Numeric AND
pc1[1.2] prc1[1.2] getVariableData(‘loanOffer1’)>getVariableData(‘loanOffer2’) Numeric AND
pc2[1.2] prc2[1.2] getVariableData(‘loanOffer1’)≤getVariableData(‘loanOffer2’) Numeric AND
pc1[1.3] prc1[1.3] getVariableData(‘loanOffer1’)>getVariableData(‘loanOffer2’) Numeric AND
pc2[1.3] prc2[1.3] getVariableData(‘loanOffer1’)≤getVariableData(‘loanOffer2’) Numeric AND
pc1[2.0] prc11[2.0] getVariableData(‘loanOffer1’)>getVariableData(‘loanOffer2’) Numeric AND

prc12[2.0] getVariableData(‘LoanOfferReview globalVariable’)=‘COMPLETE’ String AND
prc13[2.0] getVariableData(‘LoanOfferReview globalVariable’)=‘ACKNOWLEDGE’ String AND

pc2[2.0] prc21[2.0] getVariableData(‘loanOffer1’)≤getVariableData(‘loanOffer2’) Numeric AND
prc22[2.0] getVariableData(‘LoanOfferReview globalVariable’)=‘COMPLETE’ String AND
prc23[2.0] getVariableData(‘LoanOfferReview globalVariable’)=‘ACKNOWLEDGE’ String AND

pc3[2.0] prc31[2.0] getVariableData(‘loanOffer1’)>getVariableData(‘loanOffer2’) Numeric AND
prc32[2.0] getVariableData(‘LoanOfferReview globalVariable’) /= ‘COMPLETE’ String OR
prc33[2.0] getVariableData(‘LoanOfferReview globalVariable’) /= ‘ACKNOWLEDGE’ String OR

pc4[2.0] prc41[2.0] getVariableData(‘loanOffer1’)≤getVariableData(‘loanOffer2’) Numeric AND
prc42[2.0] getVariableData(‘LoanOfferReview globalVariable’) /= ‘COMPLETE’ String OR
prc43[2.0] getVariableData(‘LoanOfferReview globalVariable’) /= ‘ACKNOWLEDGE’ String OR

a The reference of path condition pci[version] is attached with XBFG path pi[version].

s and

s
i

p

I
n

i
m
p
t
t
e
v

6

e
c
t
c
i

6

6

u
v
m
I
a
t
o
d
d
(
t
S
i
u
s
t

o
i
d
r
t
b
p
e
a
W
f

6

a
f
a
n

B. Li et al. / The Journal of System

hifted to the new path set P[1.1]sn. From message sequence compar-
son based on Algorithm 3, we have

1[1.1]m=p1[1.0]

t means that p1[1.1] should be still remained in P[1.1]so and we do
ot need to generate new test cases.

After both XBFG path comparison and message sequence compar-
son, we find that only one XBFG path p1[1.1] is affected by the

odification when service evolves from v1.0 to v1.1 and the other
ath p2[1.1] does not need to be rested. Since p1[1.1] belongs to
he old path, it is unnecessary to generate new test cases to retest
his path. So path condition analysis is ignored here since P[1.1]sn is
mpty. We can use the test cases that are attached with p1[1.0] to
alidate the correctness of the modified version v1.1.

. Experimental evaluation

In this section, we conduct an experimental study to evaluate the
ffectiveness of proposed approach by showing that it has a high
hange coverage rate using selected test cases. We will discuss how
o set evaluation criterion, how to collect data and how to evaluate
hange coverage. In addition, we also discuss the threat to validity
n this section.

.1. Experimental design

.1.1. Subject programs, versions
Suppose that loan composite service has passed through a contin-

ous evolution and four versions are generated, including modified
ersion v1.1 mentioned in Section 2. Fig. 9(a)–(c) shows the specific
odification in BPEL code for the other three versions, respectively.

n version 1.2 of LCS (v1.2 for short), the service integrator uses
nother candidate service CreditRatingService with the same func-
ionality to replace the corresponding one in v1.0. In version 1.3
f LCS (v1.3 for short), the message LoanServiceRequestMessage
efined in LoanService.wsdl evolves by changing the content of user-
efined complexType LoanApplicationType. In version 2.0 of LCS
v2.0 for short), more modifications have been made on v1.0, where
wo additional partner services have been imported, one is custom-
ervice, which provides the function of SSN querying, and the other
s taskService, which provides the function of manual checking for
sers. Therefore two partnerLinks are added into the process, and
ome new interfaces are imported in this version. We set v1.0 as
he baseline version of v1.1, v1.2, v1.3 and v2.0.

Table 5 shows the descriptive statistics of the subject program
f different versions. The scale information of BPEL specification,
ncluding LOC of BPEL document and the number of activities
efined in the process, are shown in the second and third column,
espectively. The number of related WSDL specifications used in
he composite service is listed in the fourth column. The num-
er of message types used in communication between process and
artner services is listed in the rightmost column of the table. For
very version of subject program, we used the test case selection
pproach presented in Section 4 to determine the XBFG path sets.
e then perform regression testing with some test case coming

rom the baseline version and collect the test results.

.1.2. Evaluation criterion
In this section, we discuss how to analyze the change cover-
ge. Suppose the actual numbers of changes of BPEL process (in
act, it is the changes of BPEL activities), bindings and interfaces
re denoted as |�[i]pc|, |�[i]bc| and |�[i]ic|, respectively, and the
umber of each kind of change covered is denoted as numpc, numbc
 Software 85 (2012) 1300– 1324 1317

and numic, respectively, then the coverage rate of process changes
is evaluated as follows:

�[i]pc = numpc

�[i]pc
× 100 %

The coverage rate of binding changes is evaluated as follows:

�[i]bc = numbc

�[i]bc
× 100 %

And the coverage rate of interface changes is evaluated as fol-
lows:

�[i]ic = numic

�[i]ic
× 100 %

As Table 2 shows that process change and binding change occur
in BPEL document only, and such changes behave as changes of
XBFG elements in XBFG model, �[i]pc and �[i]bc can be represented
as proportion between the covered changes and the actual changes
in XBFG model. Let |nn|, |nm| and |nd| denote the number of new
XBFG elements, modified XBFG elements and deleted XBFG ele-
ments caused by service evolution, respectively. Let |n′

d
| denote the

number of deleted elements that can be covered by the calculated
old path set and new path set, then we define

�[i]pc = numpc

�[i]pc
× 100 % = |nn| + |nm| + |n′

d
|

|nn| + |nm| + |nd| × 100 %

Similarly, let |bn|, |bm| and |bd| denote the number of new bind-
ings, modified bindings and deleted bindings, respectively, then we
define

�[i]bc = numbc

�[i]bc
× 100 % = |bn| + |bm|

|bn| + |bm| + |bd| × 100 %

Although a WSDL document is composed of the definitions of
port, binding, portType, operation, message and type, our
approach covers only the message and type used by the composite
service. Let |Pd|, |Bd|, |PTd|, |Od|, |Md| and |Td|, respectively, denote
the set of changed ports, bindings, portTypes, operations, messages
and types that are have been defined in WSDL documents for both
composite service and partner services, |Mu| and |Vu| denote the
number of changed messages and variables that are covered, then
we define

�[i]ic = numic

�[i]ic
× 100 %

= |Mu| + |Vu|
|Pd| + |Bd| + |PTd| + |Od| + |Md| + |Td| × 100 %

From the three estimation equations above, it can be inferred
that �[i]pc depends on the proportion between |n′

d
| and the actual

changes of XBFG elements, �[i]bc depends on the proportion
between |bd| and the actual changes of binding, and �[i]ic depends
on the proportion between (|Mu| + |Vu|) and the number of actual
changed elements in WSDL documents.

6.1.3. Prototype tool
We have developed a prototype tool, named RTGenius4BPEL

(regression testing genius for BPEL-based service), for implement-
ing the automatic regression testing of composite Web service. It
has three main functions:

(1) Test case selection. Service integrators can determine which

paths are old paths and select test cases from the baseline ver-
sion.

(2) New test cases generation. Service integrators can deter-
mine which paths are new paths and generate new test cases

1318 B. Li et al. / The Journal of Systems and Software 85 (2012) 1300– 1324

or thre

(

6

s
o
a
r
v
t

{
X

Fig. 9. XBFGs of LCS f

automatically or semi-automatically, which is outside the scope
of our study.

3) Change coverage analysis: Service integrators can evaluate the
coverage rate of all changes in different versions.

.2. Data collection

Prior to test case selection for v1.1, v1.2, v1.3 and v2.0 of LCS,
ome preparation work should be finished, such as the construction
f XBFG, XBGF path computation, message sequence calculation
nd path condition extraction. According to the transformation
ules presented in Section 4.2, we can get XBFG models of all five
ersions, as shown in Fig. 10(a), (b), (c), (d) and (e), corresponding

o v1.0, v1.1, v1.2, v1.3 and v2.0, respectively.

Let P[v] denote the set of XBFG paths of version v and P[v] =
p1[v], p2[v], . . . , pk[v], . . .} (k ≥ 1), where pk[v] represents the kth
BFG path in P[v]. Let MS[v] be the set of XBFG message sequences
e modified versions.

of version v and MS[v] = {ms1[v], ms2[v], . . . , msk[v], . . .}, where
msk[v] represents the message sequence corresponding to the XBFG
path pk[v]. Similarly, let PC[v] be the set of XBFG Path conditions of
version v and PC[v] = {pc1[v], pc2[v], . . . , pck[v], . . .}, where pck[v]
represents the path condition corresponding to the XBFG path pk[v].

The generated XBFG paths of all versions can be computed with
Algorithm 1. Table 6 shows the construction of XBFG elements
for each XBFG path where the field ID . id is the representative
notation of each element. In this table, the bold numbers indi-
cate the modified part based on the baseline version by performing
XBFG path comparison with Algorithm 2. Similarly, the XBFG mes-
sage sequence for the corresponding XBFG path can be calculated
according to the steps illustrated in Fig. 8. The generated message

sequences are shown in Table 7 and the bold parts indicate the
modified contents relative to the corresponding message sequence
of the baseline version according to Algorithm 3. In addition, details
of path condition of each XBFG path is provided in Table 8.

B. Li et al. / The Journal of Systems and Software 85 (2012) 1300– 1324 1319

Fig. 10. The XBFGs of LCS for the initial version and four modified versions.

1320 B. Li et al. / The Journal of Systems and Software 85 (2012) 1300– 1324

Table 9
Test case selection for four modified versions.

Ver. Path Old New Test selection from baseline Total test %

v1.1 p1[1.1]
√

t1, t2, t3 6 50
p2[1.1]

v1.2 p1[1.2]
√

t1, t2, t3 6 100
p2[1.2]

√
t4, t5, t6

v1.3 p1[1.3]
√

t1, t2, t3 6 100
p2[1.3]

√
t4, t5, t6

v2.0 p1[2.0]
√

t1, t2, t3 6 100
p2[2.0]

√
t4, t5, t6

p3[2.0]
√

t1, t2, t3

p4[2.0]
√

t4, t5, t6

Table 10
Data statistics of all five versions.

Version XBFG path Changed path XBFG element Changed element Message Changed message Variable Changed variable Change type

v1.0 2 - 45 - 8 - 4 - -
v1.1 2 1 45 3 8 0 4 0 Process change
v1.2 2 2 45 3 8 0 4 0 Binding change
v1.3 2 2 45 3 8 3 4 1 Interface change (PS)

3

a
t
t
w
p
p
a

t
t
s
n
t

c
p
p
p
a
fi
p
m
m
e
t
w
m
t
t

T
C

v2.0 4 4 75 32 1

A test suite for BEPL-based composite services can be generated
utomatically based on some decision coverage criterion against
he XBFG path. Since it is not the emphasis of this article, we let
he baseline test suite for v1.0 of LCS be T[1.0] = {t1, t2, t3, t4, t5, t6},
here the first three test cases (t1, t2, t3) are bound to test XBFG
ath p1[1.0], while the last three (t4, t5 and t6) are bound to test
2[1.0]. With Tables 6, 7 and 8, we can perform test case selection
nd the result is shown in Table 9.

In Table 9, all generated XBFG paths for each version are listed in
he second column. The third and fourth column represent whether
he current XBFG path is an old path or a new path. Test cases
elected from the baseline v1.0 are shown in the fifth column. The
umber of selected test cases and the usage statistics are shown in
he last two columns.

In v1.1 of LCS, XBFG path p2[1.1] is not affected by the modifi-
ation, which means that no test case is needed for p2[1.1]. Only
1[1.1] is judged as an old path and those test cases mapped to test
1[1.0] can be selected for testing p1[1.1]. In v1.2 of LCS, both paths
1[1.2] and p2[1.2] are considered to be old paths and test cases
pplied in v1.0 are all selected to guarantee the correctness of modi-
ed version v1.2. In v1.3 of LCS, though we have p1[1.3] = p1[1.0] and
2[1.3] = p2[1.0] after XBFG path comparison, for the corresponding
essage sequence in Table 7, we have ms1[1.3] /= ms1[1.0] and
s2[1.3] /= ms2[1.0], so both paths p1[1.3] and p2[1.3] are consid-

red to be new paths on which new test cases must be generated
o guarantee their correctness. On the other hand, from Table 8
e can see that prc1[1.3] = prc1[1.0] and prc2[1.3] = prc2[1.0], which

eans that the path conditions of both p1[1.3] and p2[1.3] equal

o those of p1[1.0] and p2[1.0], respectively. So the test cases used
o test p1[1.0] can also be applied in the regression testing in v1.3

able 11
hange coverage of four modified versions.

Version �[i]pc �[i]bc �[i]ic

v1.1 3/3 = 100% – –
v1.2 – 3/3 = 100% –
v1.3 – – 4/8 = 50%
v2.0 32/32 = 100% 2/2 = 100% 10/132 = 7.58%
5 7 5 Process change
Binding change
Interface change (PS)

although some new test cases are needed. In v2.0 of LCS, more mod-
ifications have been made to v1.0, including two additional partner
services, which causes the number of XBFG paths to increase to 4.
As all paths are classified as new paths, 6 test cases are selected as
the final test suite for testing v2.0 according to the path condition
analysis.

6.3. Change coverage evaluation

In this section, we will present the coverage rate of four versions,
and discuss the advantages and disadvantages of our approach
based on the result.

Table 10 provides some statistics of XBFG model of each version
and the comparison against the baseline version. The number of
XBFG paths for each version is listed in the second column while
the number of changed XBFG paths compared to the original ver-
sion v1.0 is listed in the third column. In fourth and fifth column, the
number of XBFG elements in the corresponding XBFG model and
the number of the changed XBFG elements are provided, respec-
tively. Similarly, the number of messages in XBFG model and the
number of changed messages are shown in the sixth and seventh
column, respectively. The number of variables used in the messages
and the number of changed variables are shown in the eighth and
ninth column, respectively. The last column presents the involved
change types. For example, both v1.0 and v1.1 have 2 XBFG paths
and v1.1 has one changed XBFG path over v1.0. Specifically, both
v1.0 and v1.1 have 45 XBFG elements and v1.1 has 3 changed XBFG
elements over v1.0 but both messages and variables in fact have no
changes from v1.0 to v1.1. From the analysis of XBFG path compari-
son and message sequence comparison, we find that the change type
from v1.0 to v1.1 is process change.

In Section 6.2, we have assumed that three test cases t1, t2 and
t3 are used to test XBFG path p1[1.0] while t4, t5 and t6 are used
to test p2[1.0]. In v1.1, as p1[1.1] belongs to the old path under the

process change, 3 test cases are used to test p1[1.1] and the num-
ber of generated test cases is 0. Since only one activity has been
changed, the test case coverage is �[1.1]pc = 3/3 = 100%, which is
also shown in the first row of Table 11.

s and Software 85 (2012) 1300– 1324 1321

t
n
b

t
e
t
v
v
o
i

p
c
c
o

•

•

•

c
T
p
w
m
i
m

s
f
s
v
t
p
e
b
v
�
d
a
s
I
c
v
c
c
w
c
i

h
f
c
c
o

B. Li et al. / The Journal of System

In v1.2, as both p1[1.2] and p2[1.2] belong to the old path under
he binding change, all 6 test cases can be used to test P[1.2] and the
umber of generated test cases is also 0. Since only one binding has
een changed, the test cases coverage is �[1.2]bc = 3/3 = 100%.

In v1.3, as both p1[1.3] and p2[1.3] belong to the new path under
he interface change in partner service, new test cases must be gen-
rated. But from the path condition analysis above, we find that all 6
est cases can be used to test P[1.3]. In Table 10 we can see that one
ariable and three messages are changed during the evolution from
1.0 to v1.3, which causes change to definitions of one operation,
ne portType, one binding and one port. So the test cases coverage
s �[i]ic = 4/8 = 50%.

During the evolution from v1.0 to v2.0, as all of the four XBFG
aths in v2.0 have been influenced by process, binding and interface
hanges, they should be retested and all of them need new test
ases. The number of test cases selected from v1.0 is 6. The coverage
f test cases based on different change types are given as follows:

Process change: 32 XBFG elements are added or modified and the
experiment covers all 32 elements, so �[2.0]pc = 100%.
Binding change: 2 bindings are added and the experiment covers
both 2 bindings, so �[2.0]bc = 100%.
Interface change: 132 XBFG elements are added or modified in
CustomerService.wsdl and TaskServiceWSIF.wsdl. The experiment
covers 10 of them (5 changed messages and 5 changed variables),
so �[2.0]ic = 10/132* 100 % = 7.58 %. The 10 covered interface ele-
ments are all used by the composite service.

From the analysis result we can see that the interface change
overage is on the low side compared to the other two coverages.
his may be due to the lack of full control over the interfaces of
artner services from the perspective of service integrator. So when
e perform regression testing for the interface change, only used
essages and used variables can be covered while other definitions

n interfaces, such as operations, portTypes, bindings and ports, are
issed.
Considering the low coverage of interface change, we next con-

ider the possibility of improving this coverage. Since not all the
unctionalities of the partner service are involved in the composite
ervice, many interfaces of partner services actually are irrele-
ant to the tested composite service, which may directly reduce
he change coverage of interfaces. We modify the interfaces of
artner service in version 2.0 separately in three experiments. In
xperiment Ep1, we delete one new service and corresponding
inding, one port type, one port and one operation in CustomerSer-
ice.wsdl. The result is that 5 messages and 5 variables are covered,
[2.0]ic = 10/125* 100 % = 8 %; In experiment Ep2, we continue to
elete 6 messages and their corresponding 6 variables of newly
dded service in TaskServiceWSIF.wsdl. The result is that 5 mes-
ages and 5 variables are covered, �[2.0]ic = 10/113* 100 % = 8.85 %;
n experiment Ep3, we continue to delete 10 messages and their
orresponding 10 variables of newly added service in TaskSer-
iceWSIF.wsdl. The result is that 5 messages and 5 variables are still
overed, �[2.0]ic = 10/93* 100 % = 10.75 %. Fig. 11 shows the trend
urve of the changed interface coverage which increases steady
ith the reduction of irrelevant interfaces of partner services. It

an be concluded that changed interface coverage is more precise
f irrelevant interfaces can be eliminated.

In conclusion, our empirical study shows that our approach
as more expressive capability than other approaches which only
ocus on process change. Furthermore, the selected test cases can
over most process changes and binding changes. The coverage of
hanged interface is not high since many unused functionalities
f partner service are also included in the computation. If we can
Fig. 11. Change coverage rate growth curve.

eliminate the useless interface, the interface change coverage can
be increased.

6.4. Threats to validity

Threats to construct validity relates to the metrics used to eval-
uate the effectiveness of test case selection. In this experiment,
we use the change coverage metric to evaluate the effectiveness
of selected test cases by our approach. This is our newly defined
metric since no such kind of existing metric is found in the related
work of test case selection of web service. However, this metric
may reduce the trustworthiness of our approach.

Threats to internal validity are the confounds that can affect the
experimental results. When executing a test case on a service com-
position, the context of the entire composite service, especially the
context of partner services, may change the execution path of each
test case, which may also directly affect the result of change cover-
age evaluation. Therefore, before the execution of each test case, the
prototype tool RTGenius4BPEL resets the context of all participating
services to avoid impact caused by historical states.

Threats to external validity are concerned with whether the
results are applicable to the general situation. First, only one subject
service system has been selected. The particular feature of this sys-
tem may affect our results. In addition, since it is really difficult to
find publicly available benchmark programs with our required real-
life modifications, the modified versions of v1.1, v1.2 and v1.3 are
manually generated, which may also affect the generality of results.
Second, the scale of selected subject system is not large enough
to fully illustrate that our proposed approach is practical for test-
ing large-scale BPEL-based systems. To reduce these two threats,
we plan to collaborate with the industry to evaluate our proposed
test case selection technique on existing large-scaled web services
involving enough changes in real scenario under enterprise-level
distributed computing environments.

7. Related work

Many researchers have studied the testing problem of Web ser-
vices. In fact many methods and tools have been proposed to test
basic service, composite service and even service-oriented applica-
tion, such as unit testing (Lubke, 2007; Li et al., 2008a; Yan et al.,
2006), model-based testing (Jose et al., 2006; Keum et al., 2006;
Dong et al., 2006; Jeewani et al., 2006), regression testing (Liu et al.,
2010; Penta et al., 2007), integration testing (Tarhini et al., 2006)

and so on, which are mostly come from traditional software engi-
neering. In the area of regression testing for Web services, many
interesting methods or techniques have been proposed, as shown
in Table 12.

1322 B. Li et al. / The Journal of Systems and Software 85 (2012) 1300– 1324

Table 12
Comparison of related work on regression testing of composite service.

Reference Perspective Test object WS technique Test strategy Approach Change types included

Liu et al. (2010) Service integrator CSa BPEL White-Box CFG Process change
Tsai et al. (2009) Service provider Sb WSDL,OWL-S Black-Box CRM –

Penta et al. (2007) Service integrator S WSDL Black-Box Facet Functional change
Non-functional change

Tarhini et al. (2006) Service integrator CS WSDL White-Box TPG,TLTS Functional change
Interface change

Ruth et al. (2007) and Ruth and Tu (2007) Service integrator S WSDL White-Box Global CFG Functional change
Mei et al. (2009) Service integrator CS BPEL,WSDL Black-Box Tag –
Chen et al. (2010) Service integrator CS BPEL Black-Box BPFG Process change

Our approach Service integrator CS BPEL, WSDL White-Box XBFG Process change
Binding change
Interface change

ite ser

v
a

i
o
c
t
t
i
i

t
c
c
t
i
n
H
e
u

t
p

r
w
a
e
K
i
m
w
X
i
p

t
v
t
b
t
o
f
j
s
2

a CS is the abbreviation of composite service.
b S is the abbreviation of Service which is composed of basic service and compos

(1) Among the many problems with regression testing of Web ser-
ice, test object and the role of tester are both important, because they
ffect the test strategy and approach.

Penta et al. discussed how to perform regression testing in detail
n Penta et al. (2007), where they consider how the evolution
f Web service were caused by function change and non-function
hange of complex service, and analyzed many testing methods and
ools for all kinds of scenarios. But their test object of regression
esting is mainly basic service because all their example scenar-
os involved the evolution caused by internal changes of a service
tself.

Tarhini et al. (2006) showed how to obtain Web service as a
wo-level model, i.e., interaction model between basic services (or
omponent), and behavior model of a basic service, used an input-
omplete TLTS (timed labeled transition system) to represent the
wo-level model, and further discussed all kinds of possible mod-
fications of service system. The technique started from TLTS and
eeded to analyze the internal flow information of a basic service.
owever, this information is sometimes very difficult to obtain and
ven likely unavailable to typical service integrators and service
sers.

(2) The second key problem is the selection of the “right” models
o describe the complex BPEL process and interaction between BPEL
rocess and partner services.

For instance, CFG model is used for change impact analysis and
egression testing path selection of BPEL process in Liu et al. (2010),
here an impact analysis rule is proposed to identify the test paths

ffected by the change of BPEL concurrent control structures. Ginige
t al. expressed BPEL control flow as algebraic expression using
leen Algebra, then identified the changes of process by compar-

ng algebraic expressions (Jeewani et al., 2006). Compared with CFG
odel, the algebraic expression model may encounter difficulties
hen it is used for expressing complex structures. Our proposed
BFG model is based on CFG, and can describe not only the behav-

or of BPEL process but also the interaction between process and
artner services.

Khan et al. proposed a model-based approach for regression
esting of Web service, where service interfaces are described by
isual contracts, i.e., pre- and post-conditions expressed as graph
ransformation rules. The analysis of conflicts and dependencies
etween these rules allows them to assess the impact of a change of
he signature, contract, or implementation of an operation on other
perations, and thus to decide which of the test cases is required

or re-execution. Apart from giving the conceptual foundations and
ustifications of the approach, they also evaluated it with a case
tudy of a bug tracking service in several versions (Khan and Heckel,
009, 2011).
vice.

(3) The third important problem with regression testing of Web
service is how to select and generate test cases for testing those changed
services.

Wang et al. (2008) and Li et al. (2010) proposed a XBFG-based
regression testing framework of composite service, which is the
early work of this article, where a prototype of XBFG model was
introduced and only a high-level framework was discussed. In this
article, we not only provide details on how to define and construct
XBFG, but also introduce the concept of XBFG path based on two
sub-types in-process path and out-process path, and further deter-
mine how to select test case based on the comparisons of paths
and conditions. More experiments are also conducted to provide a
stronger support of our approach.

Lallali et al. (2008) proposed a method to test composite Web
service described in BPEL. As a first step, the BPEL specification is
transformed into an intermediate format (IF) model that is based
on timed automata, which enables modeling of timing constraints.
They defined a conformance relation between two timed automata
(of implementation and specification) and then proposed an algo-
rithm to generate test cases. Test case generation is based on
simulation where the exploration is guided by test purposes. The
proposed method was implemented in a set of tools which were
applied to a common Web service as a case study.

Based on the safe and efficient regression test selection tech-
nique proposed by Rothermel et al. (1997), Ruth et al. designed
a regression testing selection algorithm using a global CFG which
is integrated from many CFGs of partner services, and discussed
mainly how concurrent change affects regression testing (Ruth et al.,
2007; Ruth and Tu, 2007, 2007; Lin et al., 2006). Even though CFG
analysis is a normal technique to select test case for regression test-
ing, it is a bit difficult for representing the structure with data flow
information and ineffective for generating new test case because
CFG has no pre-condition constraint.

Li et al. (2008a,b) proposed a test-selection minimization algo-
rithm based on Liu et al. (2010). Chen et al. (2010) proposed
a dependence analysis based test case prioritization technique
for Web Service regression testing. Tsai et al. (2009) presented
a model-based adaptive testing (MAT) for multi-versioned soft-
ware based the coverage relationship model which can be used
to select and rank test cases. But their algorithm only considers
BPEL process, which is just one part of composite service as we dis-
cussed in Section 1. Partner service and interface are ignored in Li
et al. (2008b) and Liu et al. (2010), but they are included in our

approach.

(4) Change coverage analysis is also an important problem with
regression testing of Web service, because it is desirable to cover as
many changed services or paths as possible.

s and

c
c
w
t

m

r
v
o
i
r

b
l

8

t
a
t
a
c
fi
b
i
s
m
t
t
t

s
o
c
v
l
f

•

•

•

B. Li et al. / The Journal of System

Change impact analysis is another problem in the evolution of
omposite service. Xiao et al. proposed a method for supporting
hange impact analysis at the business process level and code level,
here an IPG (impact propagation graph) has been constructed on

he basis of analyzing all call graphs(Xiao et al., 2007).
(5) The high cost of regression testing of Web service should be a

ajor concern of testers.
Canfora and Penta (2006) discussed how the cost and

estrictions change when different shareholders, including ser-
ice developer, service provider, service integrator, third-party
rganization and user performs Web service regression testing
ndependently. But they did not provide a practical approach for
egression testing of Web service.

The cost can be reduced by building service stubs to simulate
ehaviors of message exchanges between services against data col-

ected by monitoring (Canfora and Penta, 2006).

. Conclusion and future work

The new characteristics of Web service bring a great challenge
o testing and maintaining service-centric software system. In this
rticle, we proposed an XBFG-based regression testing approach
o capture the influence caused by process change, binding change
nd interface change. The generated XBFG paths from BPEL pro-
ess and partner services are divided into two parts, where the
rst part can be re-tested by selecting test cases used in the
aseline version and the second part can be tested by generat-

ng new test cases after performing XBFG path comparison, message
equence comparison, and path condition analysis, which cover the
ain aspects of functional regression testing of service composi-

ion. Our approach has extended the study on regression testing
o testing composite service, process and interaction between
hem.

Our research represents an initial work on regression testing
ervice-centric software system, because we mainly concentrate
n the composite service in an orchestration way and only
onsider how to regression testing composite service from the
iew of service integrators. There are a lot of interesting prob-
ems to be studied in our future work. It can be concluded as
ollows:

Change of partner service includes change of its interface and
implementation. Both types of change are uncontrollable for ser-
vice integrator. In this article, only the former type is considered.
Possible solutions are proposed in Penta et al. (2007) using the
predetermined black-box strategy to perform the regression test-
ing periodically to actively check whether the implementation
has been modified.
Partner services are generally coming from different service
providers, and most of them will charge service users even when
they just call services for testing. A large amount of service
calls will increase the cost rapidly; additional, the possibility of
being attacked increases when the messages exchange occurs fre-
quently. One possible solution to these problems is to construct
stub modules to simulate partner services and use monitors to
collect messages for stub modules, to reduce the call times of
services.
In this article, we discuss how to retest composite service
produced based on BPEL, which is just one of many service com-
position languages. If a composite service is composed based

on WS-CDL (Kavantzas et al., 2012) or OWL-S (Martin et al.,
2012), how to deal with the evolution and maintenance, and
further how to perform regression testing are all in our future
works.
 Software 85 (2012) 1300– 1324 1323

Acknowledgements

This work is supported partially by National Natural Science
Foundation of China under Grant No. 60973149, partially by the
Open Funds of State Key Laboratory of Computer Science of Chi-
nese Academy of Sciences under Grant No. SYSKF1110, partially
by Doctoral Fund of Ministry of Education of China under Grant
No. 20100092110022, partially by Department of Jiangsu Educa-
tion, under Grant No. JHB2011-3, Shenzhen-Hong Kong Innovation
Circle Sponsorship Scheme under grant No. ZYB200907060012A.

References

Alves, A., Arkin, A., Askary, S., et al., 2007. Web services business process execution
language version 2.0. OASIS Standard, 11.

Benedusi, P., Cmitile, A., De Carlini, U., 2002. Post-maintenance testing based on path
change analysis. In: Proceedings of the Conference on Software Maintenance, pp.
352–361.

Canfora, G., Penta, M.D., 2006. SOA testing and self-checking. In: Proceedings of
International Workshop on Web Services-Modeling and Testing-WS-MaTE, pp.
3–12.

Canfora, G., Penta, M.D., 2006. Testing services and services-centric systems: chal-
lenges and opportunities. IT Professional 8, 10–17.

Canfora, G., Penta, M.D., 2009. Service-oriented architectures testing: a survey, soft-
ware engineering. Lecture Notes in Computer Science 5413, 78–105.

Chen, L., Wang, Z., Xu, L., Lu, H., Xu, B., 2010. Test case prioritization for web service
regression testing. In: Proceedings of the fifth IEEE International Symposium on
Service Oriented System Engineering (SOSE), pp. 173–178.

Christensen, E., Curbera, F., Meredith, G., et al., 2001. Web services description lan-
guage (WSDL) 1.1, W3C note, vol. 15.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S., 2002. Unrav-
eling the Web services web: an introduction to SOAP. WSDL, and UDDI, Internet
Computing, IEEE 6 (2), 86–93.

Dong, W.L., Yu, H., Zhang, Y.B., 2006. Testing BPEL-based web service composi-
tion using high-level Petri nets. In: Proceedings of the 10th IEEE International
Enterprise Distributed Object Computing Conference, EDOC’06, pp. 441–444.

Elbaum, S., Malishevsky, A.G., Rothermel, G., 2002. Test case prioritization: a family
of empirical studies. Proceedings of the IEEE Transactions on Software Engineer-
ing 28, 159–182.

Gudgin, M., Hadley, M., Rogers, T., et al., 2006. Web Services Addressing 1. 0—WSDL
Binding, http://www.w3.org/TR/ws-addr-wsdl.

Hou, S.-S., Zhang, L., Xie, T., Sun, J.-S., 2008. Quota-constrained test-case prioriti-
zation for regression testing of service-centric systems. In: Proceedings of the
2008 IEEE International Conference on Software Maintenance, pp. 257–266.

Jeewani, A. Ginige, Uma Sirinivasan, Athula Ginige, 2006. Mechanism for efficient
management of changes in BPEL based business processes: an algebraic method-
ology. In: Proceedings of the IEEE International Conference on e-Business
Engineering, ICEBE’06, pp. 171–178.

Jose, G.F., Javier, T., Claudio, D.L.R., 2006. Generating test cases specifications for BPEL
compositions of web services using SPIN. In: Proceedings of the International
Workshop on Web Services-Modeling and Testing, pp. 83–94.

Kavantzas, N., Burdett, D., Ritzinger, G., et al. Web services choreography description
language version 1.0. http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.

Keum, C.S., Kang, S., Ko, I.-Y., et al., 2006. Generating test cases for web services using
extended finite state machine. Testing of Communicating Systems, 103–117.

Khan, T.A., Heckel, R., 2009. A methodology for model-based regression testing of
web services, taic-part. Proceedings of the Testing: Academic and Industrial
Conference—Practice and Research Techniques, pp. 123–124.

Khan, T.A., Heckel, R., 2011. On model-based regression testing of web-services using
dependency analysis of visual contracts, taic-part. In: Proceedings of the 14th
International Conference on Fundamental Approaches to Software Engineering
(FASE’11/ETAPS’11).

Lallali, M., Zaidi, F., Cavalli, A., Hwang, I., 2008. Automatic timed test case genera-
tion for web services composition. In: Proceedings of the IEEE Sixth European
Conference on Web Services (ECOWS’08), November 12–14, 2008, pp. 53–62.

Lei, Y., Carver, R.H., 2006. Reachability testing of concurrent programs. IEEE Trans-
actions on Software Engineering 32 (6), 382–403.

Li, Z.J., Sun, W., Du, B., 2008a. BPEL4WS unit testing: framework and implementa-
tion. International Journal of Business Process Integration and Management 3,
131–143.

Li, Z., Tan, H., Liu, H., Zhu, J., Mitsumori, N.M., 2008b. Business-process-driven gray-
box SOA testing. IBM System Journal 47 (3), 457–472.

Li, B., Qiu, D., Ji, S., 2010. Automatic test case selection and generation for regression
testing of composite service based on extensible BPEL flow graph. In: Proceed-
ings of the IEEE International Conference on Software Maintenance (ICSM), pp.
1–10.
Lin, F., Ruth, M., Tu, S., 2006. Applying safe regression test selection techniques
to Java web services. In: Proceedings of the International Conference on Next
Generation Web Services Practices, NWeSP 2006, pp. 133–142.

Liu, H., Li, Z., Zhu, J., Tan, H., 2010. Business process regression testing. Service-
Oriented Computing-ICSOC 2007, 157–168.

http://www.w3.org/TR/ws-addr-wsdl
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

1 s and

L

M

M

M

M

P

R

R

R

R

T

T

T

W

X

324 B. Li et al. / The Journal of System

ubke, D., 2007. Unit testing BPEL compositions. Test and Analysis of Web Services,
149–171.

artin, D., Burstein, M., Hobbs, J., et al. OWL-S: Semantic Markup for Web Services.
http://www.w3.org/Submission/OWL-S/.

aruyama, H., Tamura, K., Uramoto, R. Digest values for DOM (DOMHASH), Network
Working Group. http://www.ietf.org/rfc/rfc2803.

ei, L., Chan, W.K., Tse, T.H., Merkel, R.G., 2009. Tag-based techniques for black-box
test case prioritization for service testing. In: Ninth International Conference on
Quality Software, pp. 21–30.

ei, L., Chan, W.K., Tse, T.H., Merkel, R.G., 2011. XML-manipulating test case pri-
oritization for XML-manipulating services. Journal of Systems and Software 84,
603–619.

enta, M.D., Bruno, M., Esposito, G., Mazza, V., Canfora, G., 2007. Web services regres-
sion testing. Test and Analysis of Web Services, 205–234.

othermel, G., Harrold, M.J., Safe, A., 1997. Efficient regression test selection tech-
nique. ACM Transactions on Software Engineering and Methodology (TOSEM)
6, 173–210.

uth, M., Tu, S., 2007. A safe regression test selection technique for web services.
In: Proceedings of the Second International Conference on Internet and Web
Applications and Services, ICIW’07, p. 47.

uth, M., Tu, S., 2007. Concurrency issues in automating RTS for web services.
In: IEEE International Conference on Web Services, ICWS 2007, pp. 1142–
1143.

uth, M., Oh, S., Loup, A., 2007. Towards automatic regression test selection for web
services. In: Computer Software and Applications Conference, COMPSAC 2007,
31st Annual International, pp. 729–736.

arhini, A., Fouchal, H., Mansour, N., 2006. Regression testing web services-based
applications. In: Proceedings of the IEEE International Conference on Computer
Systems and Applications, pp. 163–170.

arhini, A., Fouchal, H., Mansour, N., 2006. A simple approach for testing Web service
based applications. Innovative Internet Community Systems, 134–146.

sai, W.T., Xinyu Zhou, Raymond, A. Paul, Yinong Chen, Xiaoying Bai, 2009. A cov-
erage relationship model for test case selection and ranking for multi-version
software. High Assurance Services Computing, 285–311.

ang, D., Li, B., Cai, J., 2008. Regression testing of composite service: an XBFG-

based approach. In: Congress on Services Part II, SERVICES-2. IEEE, pp. 112–
119.

iao, H., Guo, J., Zou, Y., 2007. Supporting change impact analysis for service oriented
business applications. In: Proceedings of the International Workshop on Systems
Development in SOA Environments, Minneapolis, pp. 116–121.
 Software 85 (2012) 1300– 1324

Yan, J., Li, Z.J., Yuan, Y., et al., 2006. BPEL4WS unit testing: test case generation using
a concurrent path analysis approach. In: Proceedings of the 17th International
Symposium on Software Reliability Engineering, ISSRE’06, pp. 75–84.

Yoo, S., Harman, M., 2010. Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability,
doi:10.1002/stvr.430.

Yuan, Y., Li, Z., Sun, W., 2006. A graph-search based approach to BPEL4WS test gener-
ation. In: Proceedings of the International Conference on Software Engineering
Advances, p. 14.

Bixin Li received his PhD degree in computer science from Nanjing University, in
2001, and now he is a professor of School of Computer Science and Engineering at
the Southeast University, Nanjing, China. His research interests include: program
slicing and its application; software evolution and maintenance; software model-
ing, analysis, testing and verification. He has published over 90 articles in refereed
conferences and journals. He is also the director of Institute of Software Engineer-
ing at Southeast University (ISEU). He is awarded by “QinLan Porgram” of Jiangsu
Province, the Program for New Century Excellent Talents in University of China, and
CVIC SE talents award of 2011.

Dong Qiu is a second year PhD student in the ISEU at Southeast University, under the
supervision of Prof. Bixin Li. He received the BSc from Southeast University, China.
His PhD work mainly concerns on the regression testing and verification of web
services.

Hareton Leung joined Hong Kong Polytechnic University in 1994 and is now direc-
tor of the Lab for Software Development and Management. He serves on the Editorial
Board of Software Quality Journal. He is a fellow of Hong Kong Computer Society,
chairperson of its Quality Management Division (QMSID) and chairperson of HKSPIN.
He previously held team leader positions at BNR, Nortel, and GeneralSoft Ltd. He is
also an accomplished industry consultant, giving advice on software testing, quality
assurance, process and quality improvement, system development, and providing
expert witness and litigation support. His clients include large and medium-sized
organizations and government departments throughout Hong Kong and China, such
as Housing Authority, Social Welfare Dept, MPFA, OGCIO, MTR, HIT, Intellectual
Property Department, VTech, Hong Kong Productivity Council, AIA Shanghai, and

Chinese Academy of Science.

Di Wang received his master degree in computer science from southeast university,
in 2009, and now he works in People’s Procuratorate of Jiangsu Province. His work
mainly concerns on the regression testing of web services.

http://www.w3.org/Submission/OWL-S/
http://www.ietf.org/rfc/rfc2803
dx.doi.org/10.1002/stvr.430

	Automatic test case selection for regression testing of composite service based on extensible BPEL flow graph
	1 Introduction
	2 Background
	2.1 WSDL summary
	2.2 BPEL summary
	2.3 A motivating example

	3 Testing perspectives and composite service evolution
	3.1 Testing perspectives
	3.2 Change types of composite service
	3.3 Outline of our approach

	4 XBFG model
	4.1 XBFG definition
	4.2 XBFG construction
	4.3 XBFG path definition
	4.3.1 XBFG path
	4.3.2 XBFG path generation

	4.4 XBFG message sequence

	5 Test case selection
	5.1 Notations and basic ideas
	5.2 XBFG path comparison
	5.3 Message sequence comparison
	5.4 Path condition analysis
	5.5 A simple case study

	6 Experimental evaluation
	6.1 Experimental design
	6.1.1 Subject programs, versions
	6.1.2 Evaluation criterion
	6.1.3 Prototype tool

	6.2 Data collection
	6.3 Change coverage evaluation
	6.4 Threats to validity

	7 Related work
	8 Conclusion and future work
	Acknowledgements
	References

