
Information and Software Technology 73 (2016) 81–100

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Understanding the API usage in Java

Dong Qiu a, Bixin Li a,∗, Hareton Leung b

a School of Computer Science and Engineering, Southeast University, Nanjing, China
b Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong

a r t i c l e i n f o

Article history:

Received 7 September 2015

Revised 25 January 2016

Accepted 25 January 2016

Available online 3 February 2016

Keywords:

API usage

Empirical study

Java

a b s t r a c t

Context: Application Programming Interfaces (APIs) facilitate the use of programming languages. They

define sets of rules and specifications for software programs to interact with. The design of language API

is usually artistic, driven by aesthetic concerns and the intuitions of language architects. Despite recent

studies on limited scope of API usage, there is a lack of comprehensive, quantitative analyses that explore

and seek to understand how real-world source code uses language APIs.

Objective: This study aims to understand how APIs are employed in practical development and explore

their potential applications based on the results of API usage analysis.

Method: We conduct a large-scale, comprehensive, empirical analysis of the actual usage of APIs on Java,

a modern, mature, and widely-used programming language. Our corpus contains over 5000 open-source

Java projects, totaling 150 million source lines of code (SLoC). We study the usage of both core (official)

API library and third-party (unofficial) API libraries. We resolve project dependencies automatically, gen-

erate accurate resolved abstract syntax trees (ASTs), capture used API entities from over 1.5 million ASTs,

and measure the usage based on our defined metrics: frequency, popularity and coverage.

Results: Our study provides detailed quantitative information and yield insight, particularly, (1) confirms

the conventional wisdom that the usage of APIs obeys Zipf distribution; (2) demonstrates that core API

is not fully used (many classes, methods and fields have never been used); (3) discovers that deprecated

API entities (in which some were deprecated long ago) are still widely used; (4) evaluates that the use

of current compact profiles is under-utilized; (5) identifies API library coldspots and hotspots.

Conclusions: Our findings are suggestive of potential applications across language API design, optimiza-

tion and restriction, API education, library recommendation and compact profile construction.

© 2016 Elsevier B.V. All rights reserved.

1

c

t

b

p

a

o

p

r

e

i

h

n

o

g

f

i

l

g

c

c

w

a

I

h

0

. Introduction

Syntax and semantics define a programming language. Appli-

ation Programming Interfaces (APIs) facilitate its use. Most of

oday’s software projects heavily depend on the use of API li-

raries [1]. They improve code reuse, reduce development cost and

romote programmers’ productivity. However, API design has been

rtistic and biased, driven by aesthetic concerns and the intuitions

f API designers. They usually have limited knowledge on how

rogrammers actually use the API, which leads to many unnatu-

al and rarely used API features being introduced, while not some

xpected ones [2,3]. Meanwhile, the ever-growing APIs (increas-

ng features have been introduced) remain a significant barrier to
∗ Corresponding author. Tel.: +86 25 52090877; fax: +86 25 52090879.

E-mail addresses: dongqiu@seu.edu.cn (D. Qiu), bx.li@seu.edu.cn (B. Li),

areton.leung@polyu.edu.hk (H. Leung).

a

i

n

a

t

ttp://dx.doi.org/10.1016/j.infsof.2016.01.011

950-5849/© 2016 Elsevier B.V. All rights reserved.
ovice programmers [4]. In addition, API libraries have become one

f the most influential factors for the choice of programming lan-

uages [5]. Poor design of the APIs increases the learning curve

or developers and greatly influence their productivity. Therefore,

t is significant to understand the actual usage of the current API

ibraries, and optimize the designs to promote API usability for pro-

rammers.

Studying how a large number of real-world programs use APIs

an help validate or disprove the many popular “theories” con-

erning what APIs are most adopted, most useful, easiest to use;

hether APIs have been fully used by the programmers, etc. that

bound concerning programming in popular literature and on the

nternet. For language education, the gap between APIs and their

ctual usage may guide pedagogy, giving teachers insight into what

s common (and perhaps should be) and rare (and perhaps should

ot be). It also guides novice programmers to select a proportion-

lly smaller fraction, i.e. most essence of the entire APIs to reduce

he cost of learning. Language API designers may leverage data on

https://vpn2.seu.edu.cn/10.1016/,DanaInfo=dx.doi.org+j.infsof.2016.01.011
https://vpn2.seu.edu.cn/,DanaInfo=www.ScienceDirect.com+
https://vpn2.seu.edu.cn/locate/,DanaInfo=www.elsevier.com+infsof
https://vpn2.seu.edu.cn/dialog/,DanaInfo=crossmark.crossref.org+?doi=10.1016/j.infsof.2016.01.011&domain=pdf
mailto:dongqiu@seu.edu.cn
mailto:bx.li@seu.edu.cn
mailto:hareton.leung@polyu.edu.hk
https://vpn2.seu.edu.cn/10.1016/,DanaInfo=dx.doi.org+j.infsof.2016.01.011

82 D. Qiu et al. / Information and Software Technology 73 (2016) 81–100

Table 1

An overview of the Java corpus.

Corpus summary

Repository Github

No. of projects 5185

No. of files 1,595,600

Source lines of code 152,341,840

No. of imports 12,518,834

No. of class use 75,076,400

No. of field use 34,149,616

No. of method use 59,225,800

No. of unique class use 2,034,177

No. of unique field use 5,031,510

No. of unique method use 5,403,540

G

i

a

h

A

c

h

i

i

t

d

C

u

o

(

a

c

d

I

w

T

s

c

c

A

a

T

t

n

w

a

f

A

d

b

l

fi

e

a

2

J

r

G

r

i

b

p

actual API usage to optimize the design of API libraries, e.g. sim-

plifying unpopular APIs and identifying unused APIs that could be

eliminated. In addition, API usage analysis is crucial in mining API

usage patterns [6–9], and offers supports for API migration [10,11].

It also produces a positive effect in software maintenance [12].

To this end, we perform a large-scale empirical study on a di-

verse corpus of over 5000 real-world Java projects to gain insight

into how APIs are used in practice. We retrieve project depen-

dencies with the aid of Maven [13], generate accurate resolved ab-

stract syntax trees (ASTs) for approximately 150 million SLoC, cap-

ture used API entities (i.e. packages, classes, methods and fields)

from over 1.5 million ASTs, and measure the usage based on our

defined metrics: frequency (whether an API has been frequently

used), popularity (whether an API has been widely used) and cov-

erage (whether an API has been fully used). We analyze almost all

the API libraries that are adopted by practical projects, including

both core API and third-party APIs. Besides, we investigate some

extra issues, e.g. construction of API subsets and selection of the

versions of the third-party APIs. In summary, this paper makes the

following contributions:

• It presents a large-scale, comprehensive, empirical analysis of

the use of APIs in a modern programming language, namely

Java;

• This is the first work to deeply study both core API and third-

party APIs, including the use of deprecated API entities. It is

also the first to study how API usage guide the design of the

compact profiles (i.e. subset of APIs);

• Some interesting results are demonstrated: (1) 1% of the most-

used packages account for 80% of all API usage, while 70% least-

used packages are used < 0.5% of all API usage and 50% only <

0.1%; (2) 15.3% of the classes, 41.2% of the methods and 41.6%

of the fields from the core API are never used; (3) 9.5% of the

packages have all subordinative methods never used and 29.2%

of the classes have all subordinative methods never used; (4)

51.1% of deprecated classes, 43.5% of the deprecated methods

and 18.1% of the deprecated fields from the core API have been

adopted.

Taken together, our results permit API designers to empirically

consider whether the design of the API facilitates programmers’

development based on their actual usage. Our study also identifies

both hotspots (i.e. frequently and widely used APIs) and coldspots

(i.e. rarely and narrowly used APIs) to inform programmers to se-

lectively learn and adopt the APIs. For example, if the APIs are

never used, alerting programmers to use them cautiously in prac-

tical development is indispensable. In addition, the results assist to

construct appropriate subsets of the APIs, that can be employed in

either resource-constrained devices or high security environment.

We believe that our work enables data-driven language API design,

optimization and simplification, analogous to how Cocke’s study at

IBM in the 1970s on the actual usage of CISC instructions eventu-

ally led to the RISC architectures [14].

2. Methodology

This section first discusses the research questions studied,

presents the basic information of the corpus used in this study

then, and illustrates the process of how we set up and perform

the experiments.

2.1. Research questions

The goal of this study is to answer the key research ques-

tion: How programming language APIs are used in real open-source

projects. To better investigate the question, we focus on the follow-

ing dimensions:
lobal view of API usage. Most of current software projects heav-

ly depend on the use of API libraries. Understanding the API us-

ge provenance can provide an overview of API use distribution, i.e.

ow much of the API entities are reused from existing APIs (core

PIs or third-party APIs) and how much of them are designed and

reated specific to projects. We are also interested in investigating

ow much of the API entities are adopted to construct a project

n general and further validate whether the scale of the software

s correlated with the API usage. In addition, we desire to confirm

he conventional wisdom that the use of API entities obeys Zipf

istribution.

ore API usage. Core API library is essential API that facilitates the

se of the programming language, which is ordinarily developed by

fficial organizations which maintain such programming language

e.g. Java SE Development Kit, i.e. JDK from Oracle [15]). However,

s new features have been introduced increasingly, the scale of the

ore API library is growing rapidly, consuming more resources for

evices and increasing the learning curve for novice programmers.

t is significant to understand the utilization of the core API, i.e.

hether all API entities from the core library have been fully used.

he introduction of a new concept, compact profiles, which are sub-

ets of the entire core API, motivates us to inspect the utilization of

ompact profiles analogously. In addition, identifying hotspots and

oldspots can be suggestive of optimizing the design of current core

PIs and guiding novices to learn the essence preferentially. We

lso investigate the use of deprecated API entities.

hird-party API usage. Third-party API libraries are supplements

o the core API library, providing extra functionalities that are

ot supported by the core API or analogous functionalities

ith preferable implementations. Many of them are developed

nd maintained by reputable commercial companies (e.g. guava
rom Google) or open-source communities (e.g. commons-∗ from

pache). We are interested in investigating how heavily a project

epends on third-party APIs, i.e. how much of third-party API li-

raries are required to construct a project in general. In addition, a

ibrary is available in multiple versions. It would be interesting to

gure out how many distinct versions a typical library has in gen-

ral. It is also significant to investigate how programmers select

nd adopt concrete versions.

.2. Gathering the corpus

Our large-scale corpus consists of 5185 (including over 1.5M

ava files and 15M non-comment lines of code) open-source and

eal-world Java projects whose source code is available from

ithub, one of the most popular repository hosting services. We

igorously select applications based on the popularity by synthet-

cally considering their size of watchers, stars and forks provided

y Github. Table 1 lists the corpus summary information. The cor-

us is diverse, covering various application domains and size. It

D. Qiu et al. / Information and Software Technology 73 (2016) 81–100 83

0
1

5
0

3
0

0
4

5
0

6
0

0

0 2500 5000 7500 10000

(a) # LoC <= 10K

#
 o

f
P

ro
je

c
ts

0
1

0
0

2
0

0
3

0
0

4
0

0

1e+04 4e+04 7e+04 1e+05

(b) 10K < # LoC <= 100K

0
5

0
1

0
0

1
5

0
2

0
0

1e+05 1e+06 2e+06

(c) # LoC > 100K

Fig. 1. Distribution of project size in the corpus.

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
...
<dependencies>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.0</version>
<scope>test</scope>

</dependency>
...

</dependencies>
...

</project>

Fig. 2. An XML snippet shows how Maven manage dependencies.

c

r

f

t

o

d

c

o

o

o

t

2

p

d

o

f

t

w

p

t

s

v

t

t

p

w

i

a

i

s

i

c

t

t

d

2

p

p

a

t

n

p

r

w

i

a

p

l

fi

t

u

m

b

A

c

s

j
c

t

s

t
B

e

b

s

t

i

1 The concept of class is generalized. In Java, it refers to the reference types, in-

cluding normal classes, interfaces, enumerations and array types.
ontains not only widely-used Java projects maintained by the

eputable open-source communities (e.g. Tomcat, Hadoop, Derby

rom the Apache Software Foundation and JDT, PDT, EGIT from

he Eclipse Foundation), but also relatively small projects devel-

ped by indie programmers. Fig. 1 gives an indication of the

istribution of the application sizes, measured in terms of non-

omment SLoC. All applications are managed by Maven [13], one

f the most commonly-used build management systems in the

pen-source communities. Our corpus was constructed at the end

f 2014 where all applications were checked out from Github be-

ween 2014/12/29 and 2014/12/31.

.3. Resolving dependencies

Most software systems heavily depend on API libraries [1]. The

rocess of compiling and building a project will fail if its depen-

ent API libraries are missing, which probably results in the failure

f correctly resolving API entities employed by this project. Distinct

rom the strategy adopted by Lämmel et al. that manually resolved

he required dependencies through web search and download [16],

e employ one of the most popular and widely-used software

roject management and comprehension tool, Maven, to handle

he dependency management automatically [13]. It supports tran-

itive dependency resolution i.e. calculating the closure of rele-

ant dependent libraries that current dependency requires, and re-

rieve all of them automatically. Employed dependencies within

he projects are usually specified in the maven configuration file

om.xml (POM), associated with a collection of remote repositories

here dependencies can be retrieved. The dependency is uniquely

dentified by its coordinate groupId:artifactId:version,

nalogous to an integrated address and timestamp. The coordinate

s determined when the dependency is created as a project. Fig. 2
hows an example that involves dependency junit:junit:4.0
n projects. The property scope within the definition refers to the

lasspaths of the task under distinct environments (e.g. compile,

est, runtime and etc.). In this study, we concentrate on the ex-

raction and analysis of the dependencies in POM. In total, 103,256

ependencies are retrieved.

.4. Collecting API usage

An API, in programming languages, usually refers to a set of ex-

osed features or functions that facilitate the software reuse for

rogrammers. In the context of Java, an API is usually expressed as

collection of pre-written classes,1 associated with their respec-

ive fields and methods. Interrelated classes are customarily orga-

ized by packages that can provide access protection and names-

ace management. In practice, an API is normally related to a

eusable software library, thus facilitating code reuse. In this study,

e directly regard a Java API as a collection of Java API entities,

ncluding packages, classes, fields and methods. The term API us-

ge refers to how programmers adopt given API libraries, i.e. ap-

lying the concrete API entities into their source code. Hence, we

ink API usage to the actual use of packages, classes, methods and

elds. Table 2 lists all typical scenarios of API usage that we cap-

ure in this study, associated with corresponding examples. The

se of a package is aggregated by the use of its declared classes,

ethods and fields. One remarkable thing is that API entities may

e homonyms: identical lexemes with distinct effects on behavior.

s an example, the method named get() can be located in the

lass java.util.List or java.util.Set. We employ the re-

ulting type information and obtain their fully qualified name, i.e.

ava.util.List.get() and java.util.Set.get() in this

ase, to distinguish them. In another case (see the code below),

Object o = new Object(); o.toString().toString();
he first method invocation toString() on object o is re-

olved to java.lang.Object.toString() while the second

oString() is resolved to java.lang.String.toString().

ased on the resolved dependencies in Section 2.3, we can gen-

rate resolved ASTs from source code, attached with accurate type

indings for all API entities.

In general, the employed API entities originate from two

ources: external API libraries and internal APIs designed specific

o an individual project. The former refers to the reuse of the ex-

sting libraries, consisting of the core API library and third-party

84 D. Qiu et al. / Information and Software Technology 73 (2016) 81–100

Table 2

The scenarios of API usage captured in this study.

Usage scenarios Examples Resolved API entities

Class use Class instance creationa List<String> i =newArrayList<>(); java.util.List

Variable declaration String s = ”abc”; java.lang.String

Static class use intmax = Math.max(1,2); java.lang.Math

Inheritances (extends/implements) public classmyThread extendsThread {...} java.lang.Thread

Parameters public booleanmatches(String regex){...} java.lang.String

Return types publicDate getTime(String time){...} java.util.Date

Annotations @Override java.lang.Override

Exceptions try{...}catch(IOException e) {...} java.io.IOException

Generics List<String> i =newArrayList<>(); java.lang.String

Method use Instance method invocationb intlen =newString(“a”).length(); java.lang.String.length()

Static method invocation intmax = Math.max(1,2); java.lang.Math.max(int, int)

Constructor invocation String s =newString(); java.lang.String.String()

Field use Instance field accessc Point p =newPoint(); p.x=1; java.awt.Point.x

Static field access System.out.println(”Hello World!”); java.lang.System.out

a Only explicitly declared superclasses are considered. Any inherited class, which is not shown in the declaration, is not captured, e.g.

java.util.Collection in this case.
b It also includes the method invocation within its declaring class, e.g. public void m1(){...} public void m2(){m1();...}.
c It also includes the field access within its declaring class. e.g. this.age = 10;.

fi

d

c

P

i

i

w

P

p

F

a

t

c

O

n

S
S
P

t

C

t

C

l

l

x

a

a

t

(

a

2

(

2 The entity can be a package, class, method or field.
3 The entity can be a package or class.
libraries; the latter refers to the implementation of extra project-

specific functions. In this paper, we stipulate that: (1) the official

JDK [15] is set as the core API; (2) the other API libraries exter-

nally imported by a project are set as the third-party APIs; (3) API

entities that are defined within a project belong to the project-

specific API. In the discussion of API usage provenance, we capture

the use of all API entities that programmers employ in their devel-

opment, including project-specific ones. Our aim is to figure out:

How much of the API are reused and how much are written by

programmers for specific purposes? When we make a further in-

vestigation on the usage of the core and third-party API libraries,

only accessible API entities (i.e. specified by the modifier public in

Java) are under our consideration.

2.5. Metrics

Three categories of metrics are introduced to measure the API

usage: popularity, frequency and coverage. First, we formalize these

measures. Considering an API library x, Pl(x) denotes the set of

packages defined in x. We also use Cl(x), Ml(x) and Fl(x) to de-

note the set of classes, methods and fields in x respectively. For

any package y ∈ Pl(x), Cp(y), Mp(y) and Fp(y) are used to represent

the set of classes, methods and fields defined in y respectively. For

any class z ∈ Cl(x), Mc(z) and Fc(z) are used to represent the set of

methods and fields defined in z respectively. Hence, we have

Cl(x) =
⋃

∀y∈Pl (x)

Cp(y)

Ml(x) =
⋃

∀y∈Pl (x)

Mp(y) =
⋃

∀z∈Cl (x)

Mc(z)

Fl(x) =
⋃

∀y∈Pl (x)

Fp(y) =
⋃

∀z∈Cl (x)

Fc(z)

Our corpus is a set of software projects: C = {S1, S2, S3, . . .}.

When ci is a class, Uc = {c1, c2, c3, . . .} is the set of classes adopted

in C. We use Oc(S) to denote the multiset of classes employed in

software project S. We let mX denote the multiplicity function of

the multiset X; the multiplicity mOc(S)(c) returns the multiplicity,

i.e. the occurrence of class c. We elide X, when its binding is clear

from context. Uc(S) denotes the set that underlies Oc(S) whose in-

dicator function returns 1 for every class in Oc(S) with multiplicity

> 0, i.e. the set of unique classes used by S. Likewise, we use Op(S),

Om(S) and Of(S) to represent the usage of packages, methods and
elds respectively, and Up(S), Um(S) and Uf(S) to represent their un-

erlying unique set, correspondingly. Then, we illustrate the three

ategories of metrics in detail, which are also shown in Table 3.

opularity. Calculating the popularity of an API library (or entity2)

s to evaluate whether it is widely-used across the community,

.e. adopted by as many projects as possible. Within our corpus,

e employ the metrics NP(x)/RP(x), i.e. the Number/Ratio of the

rojects that use a particular API library (or entity) to measure its

opularity.

requency. Calculating the frequency of an API entity is to evalu-

te whether it is used frequently in practice. Regarding an API en-

ity x, we count its Simple Occurrence (SO(x), which does not in-

lude the occurrence of x’s subordinative entities) and Cumulative

ccurrence (CO(x), which includes the SO(x) values of x’s subordi-

ative entities). When calculating the CO(x) value of a class, both

the SO(x) values of itself and its methods and fields defined in this

class should be counted. Regarding the follow code,

System.out.printlin(”Hello World!”);
SOc(java.lang.System) = 1 while COc(java.lang.
ystem) = 2, as the use of its declared field java.lang.
ystem.out should also be counted. Besides, we use PSO(x) or

CO(x), i.e. average SO(x) or CO(x) value per Project, to measure

he “local” frequency of x within a single project that employs it.

overage. Calculating the coverage of an API library (or entity3) is

o evaluate whether it is fully used by programmers. Regarding the

lass Coverage Covc(x) (i.e. the coverage of a single class), we calcu-

ate the ratio of covered public methods (or fields) that are used at

east once w.r.t. the total public methods (or fields) defined in class

. Similarly, we use the ratio of covered public classes (or methods

nd fields) to estimate the Package Coverage Covp(x) (i.e. the cover-

ge of a single package). Regarding the Library Coverage Covl(x) (i.e.

he coverage of an API library), the ratio of covered public packages

or classes, methods and fields) can be adopted. Higher coverage of

n API indicates a higher API utilization.

.6. Tool support

We have developed a tool called, Java API Usage Extractor

JAPIExtractor), that collects, manages and analyzes the API usage

D. Qiu et al. / Information and Software Technology 73 (2016) 81–100 85

Table 3

Predefined metrics of API usage.

Category Metric Description Calculation

Popularity NPl(x)/RPl(x) Number/Ratio of the projects that use library x NPl (x) = |C′| where C′ = {Si|x ∈ Ul (Si)}, RPl (x) = NPl (x)/|C|
NPp(x)/RPp(x) Number/Ratio of the projects that use package x NPp(x) = |C′| where C′ = {Si|x ∈ Up(Si)}, RPp(x) = NPp(x)/|C|
NPc(x)/RPc(x) Number/Ratio of the projects that use class x NPc(x) = |C′| where C′ = {Si|x ∈ Uc(Si)}, RPc(x) = NPc(x)/|C|
NPm(x)/RPm(x) Number/Ratio of the projects that use method x NPm(x) = |C′| where C′ = {Si|x ∈ Um(Si)}, RPm(x) = NPm(x)/|C|
NPf(x)/RPf(x) Number/Ratio of the projects that use field x NPf (x) = |C′| where C′ = {Si|x ∈ Uf (Si)}, RPf (x) = NPf (x)/|C|

Frequency SOc(x)/PSOc(x) Occurrence of class x in total/per project SOc(x) = ∑
Si∈C mOc (Si)(x), PSOc(x) = SOc(x)/NPc(x)

SOm(x)/PSOm(x) Occurrence of method x in total/per project SOm(x) = ∑
Si∈C mOm (Si)(x), PSOm(x) = SOm(x)/NPm(x)

SOf(x)/PSOf(x) Occurrence of field x in total/per project SO f (x) = ∑
Si∈C mO f (Si)(x), PSO f (x) = SO f (x)/NPf (x)

COc(x)/PCOc(x) Cumulative occurrence of class x in total/per project COc(x) = SOc(x) + ∑
y∈Mc (x) SOm(y) + ∑

z∈Fc (x) SO f (z), PCOc(x) = COc(x)/NPc(x)

COp(x)/PCOp(x) Cumulative occurrence of package x in total/per project COp(x) = ∑
y∈Cp(x) COc(y), PCOp(x) = COp(x)/NPp(x)

COl(x)/PCOl(x) Cumulative occurrence of library x in total/per project COl (x) = ∑
y∈Pl (x) COp(y), PCOl (x) = COl (x)/NPl (x)

Coverage Covp

l
(x) Ratio of used public packages within library x Covp

l
(x) = |Pl (x) ∩ (

⋃
Si∈C Up(Si))|/|Pl (x)|

Covc
l
(x) Ratio of used public classes within library x Covc

l
(x) = |Cl (x) ∩ (

⋃
Si∈C Uc(Si))|/|Cl (x)|

Covm
l
(x) Ratio of used public methods within the library x Covm

l
(x) = |Ml (x) ∩ (

⋃
Si∈C Um(Si))|/|Ml (x)|

Cov f

l
(x) Ratio of used public fields within the library x Cov f

l
(x) = |Fl (x) ∩ (

⋃
Si∈C Uf (Si))|/|Fl (x)|

Covc
p(x) Ratio of used public classes within the package x Covc

p(x) = |Cp(x) ∩ (
⋃

Si∈C Uc(Si))|/|Cp(x)|
Covm

p (x) Ratio of used public methods within the package x Covm
p (x) = |Mp(x) ∩ (

⋃
Si∈C Um(Si))|/|Mp(x)|

Cov f
p(x) Ratio of used public fields within the package x Cov f

p(x) = |Fp(x) ∩ (
⋃

Si∈C Uf (Si))|/|Fp(x)|
Covm

c (x) Ratio of used public methods within the class x Covm
c (x) = |Mc(x) ∩ (

⋃
Si∈C Um(Si))|/|Mc(x)|

Cov f
c (x) Ratio of used public fields within the class x Cov f

c (x) = |Fc(x) ∩ (
⋃

Si∈C Uf (Si))|/|Fc(x)|

f

w

E

p

g

t

t

a

o

t

d

l

t

e

p

d

B

e

a

3

3

p

t

u

r

fi

b

t

a

g

S

u

f

i

t

p

r

i

S

fi

p

p

o

r

l

T

n

p

A

a

a

p

s

t

i

o

a

1

p

4

t

t

a

3

e

a

p

s

u

rom our corpus. JAPIExtractor uses Eclipse EGit [17] to interact

ith git-based project repositories programmatically. It integrates

clipse Aether [18] and Maven API [19] libraries to extract de-

endencies from pom.xml and automatically retrieve them from

iven remote repositories. It also leverages Eclipse JDT [20] parser

o parse Java code and build its abstract syntax tree (AST), at-

ached with accurate bindings of API entities. All generated ASTs

re stored in a database. Our tool can quickly traverse ASTs and

btain the use of API entities. It also provides statistical functions

hat assist with frequency, popularity and coverage analysis. In ad-

ition, to calculate the coverage of a given API library, our tool can

oad its corresponding jar file(s) and capture all public API enti-

ies with the aid of Java reflection technique. As the deprecated API

ntities exist, our tool adopts a two-step strategy to identify them

recisely. It first applies Java reflection to identify the API entities

eprecated by annotations. It then leverages the Apache Commons

CEL [21] to analyze class files within the jar and capture the API

ntities deprecated by Javadoc tag. All the data of API usage are

vailable online.4

. Global analysis of API usage

.1. API usage provenance

Research in software engineering has shown that reuse can

romote the productivity of the development team, reduce the

ime-to-market and improve the overall quality of software prod-

cts [22]. Adopting API libraries is one of effective and efficient

euse approaches [23]. We are interested in the API provenance to

gure out how much of the code is reused from existing API li-

raries and how much are newly added. To this end, we collect

he use of all APIs, including project-specific API entities, which

re probably protected or private for the internal use.

Table 4 shows the distribution of the API provenance from the

lobal perspective, where the use of API entities is counted by their

O values. From the perspective of the classes, we find over 40% of

sed classes originate from the core API library and 15% originate

rom the third-party libraries. The remaining 45% are implemented

nternally specific to projects. From the perspective of the methods,

he usage from the third-party libraries accounts for a larger pro-
4 http://dong-qiu.github.io/papers/lang_api_study/lang_api_study.html. b
ortion (23.27%, among which 2.27% of them are not resolved cor-

ectly,5 also originate from third-party libraries) and correspond-

ngly the use of methods from the core libraries decreases to 15%.

ignificantly different from above two distributions, the use of the

elds from existing libraries (containing both core API and third-

arty libraries) accounts for a relatively small proportion (12%). A

ossible reason is that most fields are designed to record status of

bjects, which are usually retrieved by programmers through cor-

esponding methods, e.g. getters. The tasks of accessing or manipu-

ating these fields are privately executed by their declaring classes.

he remaining static and public fields that can be accessed with

o restrictions only account for a tiny proportion.

We also present the distribution of API usage provenance by

rojects in Fig. 3. From the perspective of classes, the use of core

PI library accounts for a relatively large proportion (35–53%) of

ll API usage, while the use of third-party libraries accounts for

lower proportion (8–32%). From the perspective of methods, the

rovenance distribution looks similar, in which the use of project-

pecific methods accounts for a higher proportion. Analogous to

he results in Table 4, the use of project-specific fields is still dom-

nant.

In summary, current software projects do depend on the use

f API libraries. Approximately 45% of the employed API entities

re taken from existing API libraries (28.27% from the core API and

5.53% from the third-party libraries). In other words, if we sim-

lify the software development as a task of composing API entities,

5% of the coding work (in terms of SLoC) should be accomplished

hrough reusing existing API libraries, and the remaining 55% of

he work is required to conduct from scratch. Both of the core API

nd third-party libraries are fundamental to software development.

.2. Project size vs. API usage

From the data in Table 1, we find that, on average, one class is

mployed per two SLoC; one method is employed per three SLoC

nd one field is employed per five SLoC. Likewise, one Java file em-

loys 47 classes, 37 methods and 21 fields on average. It is rea-

onable to speculate that project size is tightly correlated with API

sage. To validate our intuitive conjecture, we generate a log–log
5 When resolving bindings of API usage, not all of the required third-party li-

raries are available on the Internet. We discuss more in the construct validity.

https://vpn2.seu.edu.cn/papers/lang_api_study/,DanaInfo=dong-qiu.github.io+lang_api_study.html

86 D. Qiu et al. / Information and Software Technology 73 (2016) 81–100

Table 4

Distribution of the API provenance.

Core Third-party Project-specific Unresolved

SO SO (%) SO SO (%) SO SO (%) SO SO (%)

Classes 30.2M 40.27 11.4M 15.25 33.3M 44.41 48K 0.06

Methods 15.5M 26.19 12.5M 21.16 29.8M 50.38 1.3M 2.27

Fields 1.9M 5.49 2.2M 6.36 30.0M 87.97 60K 0.18

Total 47.6M 28.27 26.1M 15.53 93.1M 55.34 1.4M 0.86

●

●

●

0
%

2
5

%
5

0
%

7
5

%
1

0
0

%

Core 3rd−Party Project

(a) Class

● ●

●
0

%
2

5
%

5
0

%
7

5
%

1
0

0
%

Core 3rd−Party Project

(b) Method

●
●

●

0
%

2
5

%
5

0
%

7
5

%
1

0
0

%

Core 3rd−Party Project

(c) Field

Fig. 3. The provenance distribution of the API occurrences by projects.

Fig. 4. The SO of API entities per project w.r.t. its size. The x-axes represent the project size (measured in the count of Java files); the y-axes represent the size of classes,

methods, fields, unique classes, unique methods and unique fields, respectively. Both axes are logarithmic.

d

g

t

m

3

plot for the count of API entities (including classes, methods and

fields separately) used per project w.r.t. its project size. Fig. 4(a)–(c)

demonstrate the results. Project sizes grow as quickly as the counts

of the employed API entities, indicating an approximately linear

trend. Basically every project uses less than 100,000 API classes

(or methods, fields). We also generate a log–log plot for the num-

ber of distinct API entities (including classes, methods and fields

separately) adopted per project w.r.t. its project size. Fig. 4(d)–(f)

t

emonstrate the results, which clearly indicate that project sizes

row much more quickly than the size of uniquely-used API enti-

ies. Most projects adopt less than 10,000 unique API classes (or

ethods, fields).

.3. API usage follows power-laws

A power law indicates that a small fraction of elements is ex-

remely common, whereas a large fraction is extremely rare [24].

D. Qiu et al. / Information and Software Technology 73 (2016) 81–100 87

Fig. 5. API usage distribution based on the COp values. (a) demonstrates the cumulative percentage of the COp values; (b) demonstrates the cumulative distribution function

of the COp values where the points are data, solid line is best-fit log-normal and the dashed line is best-fit power-law.

A

o

d

t

a

t

v

m

o

m

a

0

t

m

t

i

p

a

h

p

d

t

e

f

q

t

t

f

i

4

4

s

b

u

e

c

l

i

t

A

a

o

(

c

a

a

c

o

t

a

W

P

(

o

a

h

e

t

(

C

p

a

a

n

l

C

(

o

(

1

o

o

c

n

h

t

w

t

T

t

number of metrics on software systems have been observed to

bey the power-law [24–26]. Identification of these laws is con-

ucive to capture potential software’s characteristics; their exis-

ence is important to software engineering [26]. In this study, we

re interested in investigating whether the API usage also obeys

he power law. We employ the metric package frequency (COp) to

alidate this hypothesis.

Fig. 5(a) shows that a small number of packages account for

ost core API usage. The top 1% of the packages account for 80%

f all API usage and top 3% account for 90%. The heavy tail covers

any rarely used packages, 70% of the least frequently used pack-

ges account for less than 0.5% of all API usage; 50% for less than

.1%. We also fit the API usage data to some candidate distribu-

ions. Fig. 5(b) demonstrates that the power-law distribution has a

uch better fit than the log-normal distribution.

At present, most APIs continuously introduce new API enti-

ies that implement additional features and functionalities, mak-

ng their footprint gigantic. API designers seldom take actions to

rune and simplify APIs over time. We have discovered that a large

mount of API entities are rarely adopted by programmers. The

eavy tail directly identifies the coldspots of the APIs, which are

ossible targets to simplify and optimize. It is significant for API

esigners to reconsider their designs of the API based on its ac-

ual use before they plan to develop a new release, e.g. moving the

xtremely unpopular API entities from the kernel to the optional

eature set. Certainly, it is inequitable to apply only one metric fre-

uency to determine the coldspots, because some of the API en-

ities, which are employed only once (e.g. configuring global set-

ings) in most applications, are used far fewer than others in use

requency. We take some other metrics, e.g. coverage and popular-

ty, into consideration in the next few sections.

. API usage of core library

.1. Coverage analysis

API coverage analysis is considered as a principal way to as-

ist API migration [16] and increase API usability [27]. It can also

e applied to inspect whether the API library has been sufficiently

tilized. New features have been introduced ceaselessly while few

xisting features that are rarely used have been removed from the

ore APIs. It is expected to result in the rapid growth of the core

ibrary and more resources consumption for devices. We desire to

dentify those coldspots of the core API that are rarely or never

ouched by programmers and provide suggestions on simplifying

PI libraries.
Coverage is inevitably affected by the version of the core API

s new API entities are introduced. We first discuss the coverage

f core API from Java 8. From the perspective of library coverage

measured by Covc
l
, Covm

l
and Cov f

l
), we discover that 15.3% of the

lasses, 41.2% of the methods and 41.6% of the fields are never

dopted by any project in our corpus. To further analyze the pack-

ge coverage (i.e. the ratio of the classes or methods that have been

overed in a package) and class coverage (i.e. the ratio of the meth-

ds or fields that have been covered in a class) in detail, we adopt

he metrics Covc
p and Covm

p to assess package coverage, and Covm
c

nd Cov f
c to assess class coverage. Fig. 6(a)–(d) show the results.

e discuss them separately.

ackage coverage. Regarding the Covc
p values in Fig. 6(a), 50%

109/217) of the packages have all classes been used at least

nce. Only two packages (org.omg.CORBA.DynAnyPackage
nd org.omg.stub.java.rmi) whose subordinative classes

ave never been employed. The former package only provides four

xception classes related to the interface DynAny and the lat-

er package contains only one single class in total. Besides, 7.4%

16/217) of the packages have less than 50% of their classes used.

onsidering the Covm
p values in Fig. 6(b), only 9% (18/209) of the

ackages have all subordinative methods adopted (eight packages

re excluded as they have no classes). 9.5% (20/209) of the pack-

ges have none of the methods adopted in which most package

ames start with org.omg.∗. Besides, 28.2% of the packages have

ess than 50% of the methods used.

lass coverage. Considering the Covm
c values in Fig. 6(c), 34.4%

1179/3429) of the classes have all methods been used at least

nce (814 classes are excluded as they have no methods). 29.2%

1001/3429) of classes have none of the methods adopted. Besides,

4.1% (483/3429) of the classes have less than 50% of their meth-

ds used. Considering the Cov f
c values in Fig. 6(d), 45.9% (492/1073)

f the classes have all fields been adopted (3170 classes are ex-

luded as they have no fields). 33.1% (355/1073) of the classes have

one of the fields adopted. Besides, 8.1% (87/1073) of the classes

ave less than 50% of the fields used. The coverage data indicate

hat the utilization of the class from the core API is not high, in

hich about 40% of the classes have not been sufficiently used.

Normally, as new API entities are introduced into the core API,

he coverage of the core API of newer version inevitably decreases.

o validate this intuitive conjecture, we calculate the coverage on

he core APIs from other Java versions. Table 5 lists the results of

88 D. Qiu et al. / Information and Software Technology 73 (2016) 81–100

Fig. 6. Package and class coverage of the core API. The x-axes list all packages (in (a) and (b)) and classes (in (c) and (d)), sorted in the descending order by their coverage

metrics: (a) Covc
p; (b) Covm

p ; (c) Covm
c and (d) Cov f

c .

Table 5

Library coverage of core APIs from all Java versions. The core API with and without deprecated API entities are

both considered.

Versions With deprecated API entities Without deprecated API entities

Covp

l
(%) Covc

l
(%) Covm

l
(%) Cov f

l
(%) Covp

l
(%) Covc

l
(%) Covm

l
(%) Cov f

l
(%)

jdk1.8 99.1 84.8 58.9 58.4 99.1 85.2 59.2 58.9

jdk1.7 99.0 85.4 60.6 58.8 99.0 85.8 61.0 59.3

jdk1.6 99.0 85.5 61.3 60.1 99.0 86.0 61.6 60.6

jdk1.5 98.8 83.8 60.0 58.4 98.8 84.2 60.3 58.9

jdk1.4 98.5 83.4 61.0 59.1 98.5 83.8 61.3 59.6

jdk1.3 97.4 84.7 61.8 59.1 97.4 85.4 62.4 59.8

jdk1.2 98.3 85.9 63.8 62.5 98.3 86.8 64.4 63.2

jdk1.1 100.0 97.1 81.1 85.6 100.0 98.7 82.6 87.0

r

v

e

d

u

m

o

i

library coverage from jdk1.1 to jdk1.8.6 Four types of the li-

brary coverages (i.e. Covp

l
, Covc

l
, Covm

l
and Cov f

l
) are all taken into

account. We also separate the results by including and excluding

deprecated API entities as deprecation is also an influential fac-

tor for coverages. Contrary to our expectation, the coverages re-

main basically stable over most releases. Take Covm
l

as an example,

its values keep within a small range between 58.9% and 63.8% ex-

cept jdk1.1. They decrease with some minor fluctuations (e.g. in

jdk1.6) as the core API evolves. Likewise, the Covc
l

values also
6 The version string is used here. More details can be found at http://www.oracle.

com/technetwork/java/javase/jdk8-naming-2157130.html .

u

t

d

emain in a minor range between 83.8% and 85.9%, and the Cov f

l
alues fall within 58.4% and 62.5%. The factor of deprecated API

ntities does not influence the coverage much, because the size of

eprecated API entities is tiny w.r.t. the size of entire API entities.

We further inspect the package coverage by Covc
p and Covm

p val-

es (in Table 6), and class coverage by Covm
c values (in Table 7) over

ultiple versions of the core API. In Table 6, we list the number

f packages defined in each version in the second column. Since

t is impossible to present the entire set of Covc
p (or Covm

p) val-

es, we aggregate them by four ranges, and calculate their dis-

ribution. Analogous to the library coverage, except jdk1.1, the

istribution of Covc
p (or Covm

p) values remain generally stable. The

https://vpn2.seu.edu.cn/technetwork/java/javase/,DanaInfo=www.oracle.com+jdk8-naming-2157130.html

D. Qiu et al. / Information and Software Technology 73 (2016) 81–100 89

Table 6

The distribution of package coverage of core API from all Java versions.

Versions No. of packages Covc
p values Covm

p values

0 (0, 0.5) [0.5, 1) 1 0/0a 0 (0, 0.5) [0.5, 1) 1 0/0b

jdk1.8 217 0.9% 7.4% 41.5% 50.2% 0.0% 9.2% 27.2% 51.6% 8.3% 3.7%

jdk1.7 209 1.0% 7.2% 34.4% 57.4% 0.0% 9.1% 25.8% 52.2% 9.1% 3.8%

jdk1.6 203 1.0% 7.4% 30.5% 61.1% 0.0% 9.4% 25.6% 51.7% 9.4% 3.9%

jdk1.5 166 1.2% 9.0% 33.7% 56.0% 0.0% 9.6% 28.3% 47.0% 10.2% 4.8%

jdk1.4 135 1.5% 9.6% 34.8% 54.1% 0.0% 11.1% 25.2% 46.7% 12.6% 4.4%

jdk1.3 76 2.6% 13.2% 39.5% 44.7% 0.0% 7.9% 25.0% 56.6% 3.9% 6.6%

jdk1.2 59 1.7% 11.9% 39.0% 47.5% 0.0% 3.4% 30.5% 57.6% 3.4% 5.1%

jdk1.1 22 0.0% 4.5% 18.2% 77.3% 0.0% 0.0% 18.2% 77.3% 4.5% 0.0%

a 0/0 refers to those packages that do not have any subordinative classes.
b 0/0 refers to those packages that do not have any subordinative methods.

Table 7

The distribution of class coverage of core API from all Java versions.

Versions No. of classes Covm
c values

0 (0, 0.5) [0.5, 1) 1 NaNa

jdk1.8 4240 23.5% 11.4% 18.0% 27.8% 19.2%

jdk1.7 4024 23.3% 10.2% 18.5% 28.3% 19.8%

jdk1.6 3793 22.6% 10.5% 18.6% 28.6% 19.8%

jdk1.5 3279 23.4% 10.9% 18.3% 27.0% 20.5%

jdk1.4 2723 23.8% 11.4% 18.9% 25.2% 20.7%

jdk1.3 1840 22.6% 12.4% 22.8% 22.2% 20.0%

jdk1.2 1524 20.5% 12.5% 23.8% 23.0% 20.1%

jdk1.1 477 6.9% 7.8% 25.6% 35.0% 24.7%

a NaN refers to those classes that do not have any subordinative methods.

p

a

(

w

v

e

p

u

(

s

1

s

o

i

c

o

o

a

e

t

a

4

u

f

a

q

s

s

u

a

i

a

t

e

a

s

j
l

q

l

b

(

a

u

m

a

(

p

W

o

m

d

s

t

t

m

t

m

i

q

W

m

j
t

w

u

j
j
n

r

a

a

a

T

7 The ranking system takes all API entities from both of the core API and third-

party libraries into consideration and ranks them uniformly.
ackages whose Covc
p values equal to 1 account for 45–60% across

ll jdk versions. The packages with low rate of covered classes

Covc
p ∈ (0, 0.5)) account for 7–13%. On the contrary, the packages

hose Covm
p values equal to 1 account for only 3–12%. Most Covm

p

alues fall in the range [0.5, 1). The packages with low rate of cov-

red methods (Covm
p ∈ (0, 0.5)) account for a relatively high pro-

ortion (25–30%).

Switching to the class coverage, we discover that the Covm
c val-

es are equally distributed comparatively. The fully-used classes

Covm
c = 1) account for 22–29% of all classes across most jdk ver-

ions. The underutilized classes (Covm
c ∈ (0, 0.5)) account for 10–

2% as well. It is astonishing that 20–24% of the classes have their

ubordinative methods never been adopted by any project within

ur corpus on almost all jdk versions.

We are also concerned with how much of the core API library

s employed by project. Hence, we calculate the library coverage of

ore API for each project. Fig. 7 shows the results. Most (over 90%)

f the projects adopt less than 20% of packages, 10% of classes, 5%

f the methods and 5% of the fields, which represent a tiny fraction

gainst the entire core library. The scale of current core API is too

normous for most projects. We will discuss more in Section 4.4.

In summary, the utilization of the core API is not high, no mat-

er in the old or new releases. Loading the entire core API to run

pplications wastes some resources.

.2. Hotspots of API entities

API hotspots are API entities that are widely and frequently

sed in practice, which can serve as instructive starting points

or both developers and novices to understand, learn and reuse

given library [28]. We identify the most popular and fre-

uently used API entities from the core API. Tables 8–11 demon-

trate the results, sharing the similar structure. The first column

hows the qualified name of each API entity; the second col-

mn lists its popularity (RPp, RPc, RPm and RPf values for pack-

ges, classes, methods and fields respectively) and correspond-
ng ranking7; the third column lists its frequency (COp, SOc, SOm

nd SOf values for packages, classes, methods and fields respec-

ively) and corresponding ranking; the last column shows its av-

rage frequency within projects that employ it (PCOp, PSOc, PSOm

nd PSOf values for packages, classes, methods and fields re-

pectively). Regarding the use of packages, it is as expected that

ava.lang, java.util and java.io are top three preva-

ent packages, where both of their popularity (over 90%) and fre-

uency (over 3.0E+06) far exceed the remaining packages. Some

anguage features that are implemented through the core API li-

rary, e.g. reflection (java.lang.reflect), regular expression

java.util.regex), concurrency (java.util.concurrent)

nd annotation (java.lang.annotation), are also widely-

sed. Regarding the use of classes, the classes within the three

ost used packages also dominate the most popular classes, which

re mainly relate to exceptions (5/20), collections (5/20), string

2/20) and build-in annotations (2/20). The use of annotations, es-

ecially java.lang.Override, is far beyond our expectations.

e randomly check some projects and discover that most usage

f annotation @Override and @SuppressWarnings are auto-

atically generated by modern IDEs (e.g. Eclipse), whenever a class

oes override a method or the named compiler warnings should be

uppressed in the annotated element. Programmers seldom instan-

iate build-in annotations proactively. We also find that the adop-

ion of exceptions is frequent, which is probably caused by the

echanism of exception handling. Any invoked method that might

hrow certain exceptions must be enclosed by either a try state-

ent that can catch this exception or a method specifying that

t can throw the exception [29]. Such language constraints conse-

uentially lead to the increased use of exception-related classes.

e discuss more in Section 7. The most popular methods are

ainly originated from three top-used class java.lang.String,

ava.lang.List and java.lang.Map. They concentrate on

he manipulation of collections and string. The use of fields is more

idely distributed; they primarily deal with the threshold val-

es (e.g. java.lang.Integer.MAX_VALUE), system’s I/O (e.g.

ava.lang.System.out) and constant enums for settings (e.g.

ava.util.Locale.ENGLISH). We also include a special field

amed length, i.e. a build-in member of an array type, because ar-

ays are special objects in Java [29]. Its popularity is much higher

s it is not a field for a particular class.

The frequency and popularity of an API entity are not invari-

bly consistent. Take package java.lang.reflect as an ex-

mple, its RPp value ranks 6th, while COp value only ranks 18th.

his is probably because packages differ in scale (i.e. the size of

90 D. Qiu et al. / Information and Software Technology 73 (2016) 81–100

Fig. 7. Library coverage of the core API library w.r.t. projects. The x-axes list all projects, sorted in the descending order by their coverage metrics: (a) Covp

l
; (b) Covc

l
; (c) Covm

l

and (d) Covm
l

values, respectively.

Table 8

Top 20 popular packages from the core API.

Packages RPp/Rank COp/Rank PCOp

java.lang 99.9%/1 2.66E+07/1 5145

java.util 97.1%/2 1.05E+07/2 2093

java.io 93.1%/ 3 3.30E+06/3 684

java.net 64.5%/4 5.05E+05/12 151

java.lang.reflect 53.5%/6 3.49E+05/20 126

java.util.concurrent 53.4%/7 4.31E+05/15 92

java.util.regex 44.0%/8 2.17E+05/38 95

java.text 43.9%/9 1.49E+05/69 65

java.security 34.8%/11 1.71E+05/61 95

java.util.concurrent.atomic 30.8%/12 1.42E+05/72 89

java.lang.annotation 28.4%/14 1.76E+05/57 119

java.math 27.6%/15 2.50E+05/35 175

java.util.zip 26.2%/17 4.95E+04/215 36

java.nio.charset 26.1%/18 4.31E+04/255 32

java.util.logging 25.6%/19 2.71E+05/31 204

java.nio 23.8%/20 2.61E+05/33 211

org.xml.sax 20.2%/24 8.38E+04/122 80

java.sql 19.8%/25 6.45E+05/9 627

org.w3c.dom 18.6%/29 3.22E+05/21 333

javax.xml.parsers 18.5%/30 4.61E+04/235 48

Table 9

Top 20 popular methods from the core API.

Methods RPm/Rank SOm/Rank PSOm

java.lang.String.equals(java.lang.Object) 81.7%/1 5.70E+05/1 135

java.util.List.add(java.lang.Object) 81.3%/2 5.26E+05/3 125

java.util.Map.put(java.lang.Object, java.lang.Object) 75.4%/3 3.99E+05/6 143

java.util.Map.get(java.lang.Object) 74.6%/4 3.43E+05/9 89

java.util.List.size() 74.3%/5 3.58E+05/8 93

java.lang.Object.getClass() 73.5%/6 2.47E+05/14 65

java.lang.String.length() 71.7%/7 2.47E+05/13 66

java.util.List.get(int) 68.6%/8 3.86E+05/7 109

java.lang.StringBuilder.toString() 66.4%/9 1.08E+05/29 31

java.io.PrintStream.println(java.lang.String) 64.6%/10 2.70E+05/12 81

java.lang.StringBuilder.append(java.lang.String) 64.5%/11 5.07E+05/4 151

java.lang.Throwable.getMessage() 61.8%/12 1.38E+05/21 43

java.lang.Object.toString() 61.0%/13 9.88E+04/31 31

java.lang.String.startsWith(java.lang.String) 59.9%/14 8.55E+04/38 28

java.lang.String.substring(int, int) 59.6%/15 8.63E+04/37 28

java.util.Iterator.next() 59.6%/16 1.51E+05/19 49

java.util.Arrays.asList(java.lang.Object[]) 59.2%/17 1.19E+05/23 39

java.lang.Class.getName() 58.8%/18 1.68E+05/17 55

java.lang.String.substring(int) 56.3%/19 6.63E+04/49 23

java.lang.String.split(java.lang.String) 56.1%/20 4.29E+04/83 15

b

classes a package contains). Regarding packages java.awt8 and

java.lang.reflect, although the former package is employed
8 The data of package java.awt are not shown in Table 8. Its COp ranking is

10th (COp = 2.42E + 08) while RPp ranking is 32nd (RPp = 16.9%). Its PCOp = 818, is

higher than most packages.

t

m

(

i

y less projects, the number of its subordinative classes far exceeds

he number of those in the latter package, which easily forms a cu-

ulative increase in use frequency. Besides, the average frequency

i.e. PCO or PSO values) of UI-related API entities (javax.swing
s an example) is much higher than other entities.

D. Qiu et al. / Information and Software Technology 73 (2016) 81–100 91

Table 10

Top 20 popular classes from the core API.

Classes RPc/Rank SOc/Rank PSOc

java.lang.String 99.4%/1 9.21E+06/1 1787

java.lang.Override 94.2%/2 2.75E+06/2 563

java.util.List 89.2%/3 1.25E+06/4 271

java.lang.Exception 88.8%/4 1.15E+06/5 249

java.lang.Object 87.0%/5 1.52E+06/3 337

java.io.IOException 83.8%/6 8.47E+05/6 195

java.util.ArrayList 83.7%/7 5.06E+05/11 117

java.lang.System 82.8%/8 5.67E+05/10 132

java.lang.Integer 82.3%/9 7.07E+05/8 166

java.util.Map 80.4%/10 5.93E+05/9 142

java.util.HashMap 74.4%/11 2.55E+05/17 66

java.lang.Class 68.8%/12 4.49E+05/13 126

java.lang.IllegalArgumentException 68.6%/13 2.54E+05/18 71

java.lang.RuntimeException 68.3%/14 1.46E+05/31 41

java.lang.StringBuilder 67.4%/15 2.33E+05/21 67

java.util.Arrays 67.2%/16 1.69E+05/29 48

java.lang.SuppressWarnings 66.6%/17 1.72E+05/26 50

java.util.Set 65.0%/18 2.81E+05/16 83

java.io.File 63.4%/19 4.91E+05/12 150

java.lang.Throwable 63.3%/20 2.07E+05/23 63

Table 11

Top 20 popular fields from the core API.

Fields RPf/Rank SOf/Rank PSOf

X[].length (X[] is an array type) 80.9%/1 6.83E+05/1 163

java.lang.System.out 64.6%/2 2.58E+05/3 77

java.lang.System.err 36.9%/3 6.82E+04/9 36

java.lang.Integer.MAX_VALUE 36.2%/4 2.35E+04/18 12

java.lang.Boolean.TRUE 27.2%/5 2.91E+04/13 21

java.lang.annotation.RetentionPolicy.RUNTIME 26.0%/6 2.73E+04/14 20

java.util.concurrent.TimeUnit.SECONDS 24.0%/7 1.91E+04/24 15

java.lang.Boolean.FALSE 22.1%/8 2.11E+04/21 18

java.io.File.separator 20.8%/9 2.15E+04/20 20

java.util.concurrent.TimeUnit.MILLISECONDS 20.6%/10 1.59E+04/26 15

java.lang.Long.MAX_VALUE 19.4%/11 9.68E+03/53 10

java.lang.annotation.ElementType.TYPE 19.1%/12 7.06E+03/77 7

java.lang.annotation.ElementType.METHOD 17.6%/13 8.20E+03/62 9

java.lang.Integer.MIN_VALUE 16.8%/14 6.90E+03/81 8

java.lang.annotation.ElementType.FIELD 14.3%/15 5.47E+03/119 7

java.util.logging.Level.SEVERE 13.6%/16 1.19E+04/36 17

java.util.Locale.ENGLISH 13.5%/17 7.17E+03/75 10

java.lang.System.in 13.3%/18 2.64E+03/288 4

java.util.Calendar.YEAR 13.1%/19 6.20E+03/96 9

java.util.Locale.US 12.7%/20 4.47E+03/157 7

Table 12

Ten selected popular (RPc ≥ 20.0%) classes with lowest frequency.

Classes PSOc RPc (%) SOc

java.lang.Runtime 6.0 25.6 7881

java.io.FileReader 6.0 23.1 7267

java.util.concurrent.Executors 6.1 27.0 8502

java.io.OutputStreamWriter 6.6 23.0 7844

java.io.BufferedInputStream 7.2 22.3 8304

java.io.FileWriter 7.4 21.9 8400

java.lang.InstantiationException 7.5 26.9 10437

java.io.InputStreamReader 8.5 44.8 19797

java.lang.reflect.Constructor 8.8 24.4 11138

java.util.concurrent.ExecutorService 8.9 23.9 10985

A

1

t

r

I

i

f

r

4

g

c

p

e

m

o

e

t

J

d

a

(

p

fi

t

m

h

t

c

1

T

t

d

t

o

a

1

v

m

m

c

o

d

t

a

4

t

r

t

t

a

a

a

p

1

s

p

s

i

a

l

p

a

r

The above findings lead us to investigate one special group of

PI entities, with high popularity and low frequency. Tables 12 and

3 demonstrate the results of API classes and methods, which meet

he required popularity (RP ≥ 20.0%). All entities in the table are

anked by their PSO values. We find these classes are related to

/O, initialization and services, which usually require a single use

n writing code. Similarly, methods in the table are mainly invoked
or loading properties, creating URL connections and performing

ead–write operations in I/O.

.3. Usage of deprecated API entities

An API can declare parts of itself as deprecated. In general, pro-

rammers are discouraged from using a deprecated API entity be-

ause it may be dangerous, or a better alternative API entity is

rovided by the new release. Nevertheless, we find deprecated API

ntities are still applied in practice. To investigate how program-

ers use them, we capture all adopted deprecated entities from

ur corpus. Java provides two mechanisms to deprecate an API

ntity by: (1) using build-in annotation @Deprecated preceding

he API entity declaration; (2) using @deprecated tag to make

avadoc show an API entity as deprecated. We capture the use of

eprecation for both cases.

From the perspective of projects, 48.5% (2513/5185) of them

dopt at least one deprecated API entity, in which 30.3%

1575/5185) employ deprecated classes, 38.8% (2012/5185) em-

loy deprecated methods, and 15.1% (785/5185) employ deprecated

elds. Only 51.5% of the projects within our corpus have none of

he employed API entities marked as deprecated in the API docu-

entation. The data indicate that deprecated API entities are still

eavily used in many projects.

We further investigate the usage of deprecated entities from

he core API. In jdk1.8, we find 51.1% (24/47) of the depre-

ated classes, 43.5% (240/552) of the deprecated methods, and

8.1% (13/72) of the deprecated fields are adopted by programmers.

able 14 shows the distribution of the usage of deprecated API en-

ities from distinct core API versions where both size of unique

eprecated entities in use and their simple occurrences summa-

ions are listed separately. Deprecated entities, especially meth-

ds, from jdk1.1, jdk1.2 and jdk1.4 are heavily used. We

lso list the top 10 used deprecated API entities in Tables 15–

7. The getters methods in java.util.Date are adopted by

arious projects. Some heavily-used deprecated API entities, e.g.

ethod java.lang.Thread.stop(), are inherently unsafe and

ay cause arbitrary behaviors [30].

The phenomenon—nearly half of the projects employ depre-

ated API entities; half of the deprecated API classes and meth-

ds are in use—strongly indicates widespread and heavy use of the

eprecated API entities. Identifying how they are used, especially

hose that can lead to erroneous behaviors, is beneficial to discover

nd locate potential vulnerabilities of source code.

.4. Usage of compact profiles

As discussed in Section 4.1 that projects use a small subset of

he core API library in general, the loading of the entire library to

un applications consumes unnecessary resources. Java 8 API in-

roduced a new concept called compact profile, enabling applica-

ions to be compiled and run under a subset of the core API. It

llows programmers to select a proper profile that closely matches

n application’s functional requirements. Three supported profiles

re provided [29]: compact1 (CP1, containing 50 packages), com-

act2 (CP2, containing 82 packages) and compact3 (CP3, containing

18 packages). Each successive profile is a superset of its predeces-

or. For example, CP2 contains all the packages defined in CP1. Full

rofile (i.e. the entire core API) is a superset of CP3. As current de-

ign of the compact profiles is package aggregation in fact, we are

nterested in investigating whether the selection of packages for

certain compact profile has close tie with their package popu-

arity (i.e. ratio of the projects that adopted this package). To sim-

lify our description, we use CP2(A) to represent the group of pack-

ges specified in CP2 while not in CP1. Likewise, we use CP3(A) to

epresent packages specified in CP3 while not in CP2, and use

92 D. Qiu et al. / Information and Software Technology 73 (2016) 81–100

Table 13

Ten selected popular (RPm ≥ 20.0%) methods with lowest frequency.

Methods PSOm RPm (%) SOm

java.util.Properties.load(java.io.InputStream) 4.1 24.8 5339

java.lang.Class.getConstructor(java.lang.Class[]) 4.6 21.5 5170

java.net.URL.openConnection() 4.7 23.1 5635

java.lang.reflect.Constructor.newInstance(java.lang.Object[]) 4.8 26.3 6507

java.io.FileOutputStream.close() 4.9 21.8 5484

java.net.URL.openStream() 5.0 21.3 5466

java.io.File.listFiles() 5.0 25.3 6611

java.io.OutputStream.write(byte[], int, int) 5.2 21.3 5708

java.io.InputStream.read(byte[]) 5.2 27.1 7292

java.nio.charset.Charset.forName(java.lang.String) 5.3 20.3 5600

Table 14

The distribution of used deprecated API entities by core API versions.

Versions Deprecated classes Deprecated methods Deprecated fields

No. of unique �SOc No. of unique �SOm No. of unique �SOf

jdk1.8 3 35 13 94 3 16

jdk1.7 1 1 2 153 4 63

jdk1.6 1 20 11 1044 1 120

jdk1.5 1 1 9 217 0 0

jdk1.4 7 442 61 1060 0 0

jdk1.3 0 0 3 16 0 0

jdk1.2 9 404 86 979 2 5

jdk1.1 2 150 54 4187 3 69

Table 15

Top 10 used deprecated classes from the core API.

Classes NPl/Rank SOc/Rank Since

java.io.StringBufferInputStream 46/1 126/2 jdk1.1

java.rmi.RMISecurityManager 16/2 24/12 jdk1.8

org.xml.sax.Parser 15/3 74/7 jdk1.4

org.xml.sax.DocumentHandler 11/4 95/4 jdk1.4

org.xml.sax.HandlerBase 11/5 80/6 jdk1.4

org.xml.sax.AttributeList 10/6 91/5 jdk1.4

java.security.Identity 9/7 200/1 jdk1.2

javax.xml.bind.Validator 9/8 20/14 jdk1.6

org.xml.sax.helpers.AttributeListImpl 8/9 57/8 jdk1.4

java.security.IdentityScope 5/10 117/3 jdk1.2

Table 16

Top 10 used deprecated methods from the core API.

Methods NPl/Rank SOm/Rank Since

java.io.File.toURL() 186/1 983/1 jdk1.6

java.net.URLEncoder.encode(java.lang.String) 119/2 286/7 jdk1.4

java.util.Date.getYear() 91/3 538/2 jdk1.1

java.lang.Thread.stop() 86/4 186/9 jdk1.2

java.net.URLDecoder.decode(java.lang.String) 84/5 211/8 jdk1.4

java.util.Date.getHours() 81/6 480/4 jdk1.1

java.util.Date.getMonth() 78/7 509/3 jdk1.1

java.util.Date.getMinutes() 77/8 375/6 jdk1.1

java.util.Date.getDate() 74/9 460/5 jdk1.1

java.io.DataInputStream.readLine() 67/10 170/11 jdk1.1

o

p

s

r

r

r

p

u

f

r

s

d

p

t

o

s

a

t

a

t

u

p

p

s

5

5

s

a

p

p

m

p

o

Full(A) to represent packages specified in Full profile while not in

CP3.

Fig. 8 shows the results. Packages from CP1 have relatively

higher package popularities among which 17 of them with RPp

values exceed 20%. The RPp values of almost all packages from

CP2(A), CP3(A) and Full(A) are less than 20%. As expected, CP1 also

involves a considerable amount of packages that are not widely

adopted (RPp ≤ 20%). The distributions of RPp values of packages

from CP2(A), CP3(A) and Full(A) look similar.
From the view of utilization, we are also interested in figuring

ut, under current definition of compact profiles, how much of the

rojects can be correctly compiled and run by an appointed sub-

et profile instead of the entire core API. Fig. 9(a) demonstrates the

esults. Over 40% (2256/5185) of the projects can be compiled and

un under CP1. 11.7% and 6.2% of the projects require CP2 and CP3,

espectively. The remaining 38.4% of the projects still need to em-

loy the Full profile. The data indicate that most projects focus on

sing CP1 and Full profiles. The adoption of CP2 and CP3 is less

avored.

We further investigate the coverage of compact profiles by cor-

esponding groups of projects. Fig. 9(b)–(e) demonstrate the re-

ults. For projects that can be correctly compiled and run un-

er CP1, 8–16% of the packages from CP1 are employed by most

rojects. In other words, CP1 is still superfluous for most projects

o some extent. Regarding the projects that require CP2, 10–22%

f the packages from CP1 are adopted. Only 3–9% of the exten-

ion packages in CP2 (i.e. CP2(A)) are adopted. Similar behaviors

re shown in another two groups: projects that require more func-

ional profiles (e.g. CP2, CP3) in compilation and running actu-

lly adopt an extremely small subset relative to the entire ex-

ensions. Current designs of compact profiles inevitably consume

nnecessary resources none the less. We believe leaner compact

rofiles can be calculated through observing the patterns of how

rojects employ packages in practice. More discussions are pre-

ented in Section 6.

. API usage of third-party library

.1. Library popularity analysis

Apart from using the core API library, programmers usually

elect appropriate third-party libraries to maximize code reuse

nd improve the efficiency of the development process. Globally,

rojects in our corpus employ 103,256 external third-party de-

endencies. Suppose we ignore the possibility that a library has

ultiple versions (discussed in Section 5.3), 16,329 distinct third-

arty libraries are adopted. However, most usage is concentrated

n a limited range. Only 15 libraries are adopted by over 10% of

D. Qiu et al. / Information and Software Technology 73 (2016) 81–100 93

Table 17

Top 10 used deprecated fields from the core API.

Fields NPl/Rank SOf/Rank Since

java.util.logging.Logger.global 13/1 120/1 jdk1.6

javax.imageio.spi.ImageWriterSpi.STANDARD_OUTPUT_TYPE 8/2 36/3 jdk1.7

java.util.jar.Attributes.Name.IMPLEMENTATION_VENDOR_ID 5/3 8/7 jdk1.8

javax.imageio.spi.ImageReaderSpi.STANDARD_INPUT_TYPE 4/4 22/5 jdk1.7

java.util.jar.Attributes.Name.IMPLEMENTATION_URL 4/5 7/8 jdk1.8

java.io.StringBufferInputStream.pos 3/6 36/2 jdk1.1

java.io.StringBufferInputStream.count 3/7 24/4 jdk1.1

java.io.StringBufferInputStream.buffer 3/8 9/6 jdk1.1

java.awt.datatransfer.DataFlavor.plainTextFlavor 3/9 4/9 jdk1.7

java.lang.SecurityManager.inCheck 2/10 2/11 jdk1.2

CP1 CP2(A) CP3(A) Full(A)
●
●

●

●

●●

●●

●

●
●●
●●●
●

●
●●
●●●●●●

●
●●

●●●●●●●●● ●●●● ●●● ● ●● ●● ●

●●●●

●●
●●●●●●●●●●●● ●●●●●● ●●● ●● ● ● ●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●
●●●●●●

●●
●●●

0
%

2
0

%
4

0
%

6
0

%
8

0
%

1
0

0
%

0 100 200 0 100 200 0 100 200 0 100 200

R
P

p
 v

a
lu

e
s

Fig. 8. Package popularity w.r.t. compact profiles. The x-axes list all packages, ordered by their corresponding RPp values. We separate the packages into four groups: (a) CP1;

(b) CP2(A); (c) CP3(A) and (d) Full(A).

2256

608

324

1991

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

CP1 CP2 CP3 Full

(a)

#
 P

ro
je

c
ts

●

0
%

2
5

%
5
0

%
7

5
%

1
0

0
%

CP1
(b)

●

●

0
%

2
5

%
5
0

%
7

5
%

1
0

0
%

CP1 CP2(A)
(c)

●

●
●

0
%

2
5

%
5

0
%

7
5

%
1

0
0

%

CP1 CP2(A) CP3(A)
(d)

●

●

●
●

0
%

2
5

%
5
0

%
7

5
%

1
0

0
%

CP1 CP2(A) CP3(A) Full(A)
(e)

Fig. 9. Compact profiles usage. (a) shows the size of projects that can be correctly compiled and run under four profiles. Based on this classification, (b), (c), (d), (e) show

the distribution of coverage on certain compact profile by corresponding group of projects. (b) shows the boxplot of Covp

l
(CP1) of projects that require CP1; (c) shows the

boxplot of Covp

l
(CP1) and Covp

l
(CP2(A)) of projects that require CP2; (d) shows the boxplot of Covp

l
(CP1), Covp

l
(CP2(A)) and Covp

l
(CP3(A)) of projects that require CP3; (e)

shows the boxplot of Covp

l
(CP1), Covp

l
(CP2(A)), Covp

l
(CP3(A)) and Covp

l
(Full(A)) of projects that require Full profile.

a

o

i

r

u

s

t

t

t

a

s

A

a

o

u

(

t

A

o

f

a

c

m

g

p

d

t

c

F

b

(

p

d

(

ll projects within the corpus, and 265 libraries are adopted by

ver 1% projects. 9830 libraries are employed by only one project,

n which many of them are project-specific, or submodules cross-

eferenced among their parent projects. Hence, the size of widely-

sed third-party libraries is not large.

We also rank the popularity of the third-party libraries by the

ize of the projects that depend on them. As most libraries con-

ain multiple versions in general, we omit the version in the statis-

ics and group them by the groupId and artifactId. Table 18 lists

he top 20 popular libraries used in our corpus. Majority of them

re managed and contributed by the well-known, reputable open-

ource communities or companies (e.g. commons-∗ libraries by

pache Software Foundation, guava and android by Google

nd springframework-∗ by Pivotal). The application domains

f these third-party libraries are mainly centralized in the core

tilities (e.g. guava and springframework), logging framework

e.g. slf4j and log4j) and testing framework (e.g. junit and

estng), which are all valuable supplement to Java core libraries.
mong them, the most-used library junit is adopted by over 80%

f all projects, as it has become the de-facto unit testing standard

ramework for Java. slf4j and log4j are employed in over 30%

nd 20% of the projects respectively, and they are the first two

hoices when using the logging framework.

From the perspective of projects, we are interested in how

uch of third-party libraries are adopted to construct a project in

eneral. To this end, for each project, we compute the size of de-

endent third-party libraries in different development phases. As

iscussed in Section 2.3 that Maven provides mechanism to specify

he use of dependencies under given scopes (phases), we simply

lassify the libraries into three groups: compile, test and runtime.

ig. 10 shows the results. Most projects adopt 2–20 third-party li-

raries in general. Projects at the test phase require more libraries

4 or 5) than compile and runtime phases. Projects at runtime de-

end on fewer libraries. Among our corpus, 170 (3.3%) projects

o not employ any third-party library. In addition, many outliers

projects depending on numerous libraries) are not shown in this

94 D. Qiu et al. / Information and Software Technology 73 (2016) 81–100

Table 18

Top 20 adopted libraries across the corpus.

Rank Library (GroupId) Library (ArtifactId) NPl RPl (%)

1 junit junit 4270 82.4

2 org.slf4j slf4j-api 1654 31.9

3 log4j log4j 1189 22.9

4 com.google.guava guava 1099 21.2

5 commons-io commons-io 1038 20.0

6 org.slf4j slf4j-log4j12 1009 19.5

7 commons-lang commons-lang 782 15.1

8 javax.servlet servlet-api 752 14.5

9 org.mockito mockito-all 750 14.5

10 org.springframework spring-context 667 12.9

11 org.apache.httpcomponents httpclient 602 11.6

12 ch.qos.logback logback-classic 58 11.2

13 commons-codec commons-codec 580 11.1

14 com.google.android android 539 10.4

15 commons-logging commons-logging 513 9.9

16 org.springframework spring-core 512 9.9

17 joda-time joda-time 511 9.9

18 org.springframework spring-webmvc 493 9.5

19 org.codehaus.jackson jackson-mapper-asl 488 9.4

20 org.testng testng 473 9.1

Table 19

Top 20 popular packages from the third-party APIs.

Packages Library RPp/Rank COp/Rank

org.junit junit4 61.9%/5 2.80E+06/44

junit.framework junit3 35.8%/10 1.43E+06/52

org.slf4j slf4j 29.3%/13 4.47E+05/80

org.junit.runner junit4 26.8%/16 3.50E+04/127

com.google.common.collect guava 20.9%/23 5.09E+05/75

org.apache.commons.io commons 20.0%/25 5.12E+04/123

com.google.common.base guava 19.4%/27 2.85E+05/88

org.mockito mockito 19.3%/28 4.11E+05/81

org.hamcrest hamcrest 18.0%/31 2.57E+05/86

org.apache.commons.lang commons 16.8%/33 7.85E+04/121

org.mockito.stubbing mockito 16.6%/34 1.07E+05/95

org.apache.log4j log4j 14.9%/37 1.86E+05/47

org.apache.http httpcomponents 13.0%/40 7.22E+04/137

org.junit.runners junit4 12.8%/41 1.31E+04/1013

org.apache.http.impl.client httpclient 11.5%/43 1.31E+04/1008

org.apache.http.client.methods httpclient 11.5%/44 2.12E+04/550

org.apache.commons.logging commons 11.2%/46 2.44E+05/37

org.apache.http.client httpclient 10.7%/49 9.29E+03/1537

javax.inject javaee 10.7%/51 6.40E+04/150

org.junit.rules junit4 10.7%/52 2.01E+04/591

t

l

a

a

i

A

f

e

v

f

d

p

d

a

5

d

r

boxplot. Take project fabric89 as an example of outliers, which is

an integration platform for management of Java containers, totally

requires 745 libraries in the compile phase.

5.2. Hotspots of API entities

We also identify the hotspots of the third-party libraries.

Tables 19–22 show the results, which share the similar structure

with Table 8. Compared with the top 20 adopted third-party

libraries in Table 18, the results of top 20 popular packages

show no exceptions; they mainly come from the API libraries

of junit, guava and apache-∗ series. The only distinctive

package org.hamcrest from hamcrest is not shown in most

popular list since hamcrest has been pulled into junit4. It is

curious that popularity of some package exceeds the popularity

of the library it belongs to, e.g. RPp(org.mockito)=19.3% while

RPl(org.mockito:mockito-all)=14.5%. This is because one

API entity might be packaged into libraries of multiple versions

for distinct usage scenarios. In this example, org.mockito
is involved in both org.mockito:mockito-all and

org.mockito:mockito-core where they correspond to

the entire version and the core version, respectively. Regarding
9 https://github.com/fabric8io/fabric8.

i

p

t

0
2

0
4

0
6

0

Compile Test Runtime Total

#
 D

e
p

e
n

d
e

n
c
y

 L
ib

ra
ry

Mi

Ma

Me

Me

Q1

Q3

Fig. 10. The distribution of dependency library usage by projects. The left figure shows

provides details of the boxplot.
he top popular classes and methods, most are covered by the

ibraries of junit4 and slf4j. Instead, the most popular fields

re from more libraries, but still within the top 20 libraries. As

more detailed representation, for each of the top 10 packages

n Table 19, Table 23 further lists the most popular subordinative

PI entities (classes, method and fields) if exist.

We indeed discover many third-party libraries, which expand or

acilitate the use of the core API, are also beloved by programmers,

.g. guava, commons-io and joda-time. The popularities of

arious packages from the third-party libraries even exceed those

rom the core API. It reflects the essentiality, on one hand, to intro-

uce supplementary functionalities that are urgently requested by

rogrammers into the core API; on the other hand, to revise the

esign of the core API to enhance its usability. More discussions

re presented in Section 6.

.3. Multiple versions analysis

A library is available in multiple versions as it evolves. Library

esigners usually encourage programmers to apply the newest

elease since it add new features, fix bugs or improve qual-

ty. However, programmers are cautious to select the most ap-

ropriate release for projects. We are interested in the distribu-

ion of the versions of the libraries that are adopted by projects.
Compile Test Runtime Total

n 0 0 0 0

x 667 739 643 745

an 15.7 19.3 14.3 19.4

dian 6 8 5 8

2 4 2 4

15 19 14 19

the boxplot of size of the libraries w.r.t. projects. The statistics in the right table

https://vpn2.seu.edu.cn/fabric8io/,DanaInfo=github.com,SSL+fabric8

D. Qiu et al. / Information and Software Technology 73 (2016) 81–100 95

Table 20

Top 20 popular fields from the third-party APIs.

Fields Library RPf/Rank SOf/Rank

com.google.common.base.Charsets.UTF_8 guava 6.0%/51 4.94E+03/138

javax.ws.rs.core.MediaType.APPLICATION_JSON javaee 5.7%/57 2.37E+03/345

javax.servlet.http.HttpServletResponse.SC_OK tomcat 5.4%/65 3.19E+03/225

android.view.View.VISIBLE android 5.3%/68 1.08E+04/45

org.springframework.web.bind.annotation.RequestMethod.GET spring 5.2%/69 3.75E+03/195

android.view.View.GONE android 5.1%/70 1.10E+04/44

android.os.Build.VERSION.SDK_INT android 5.1%/73 3.43E+03/214

javax.servlet.http.HttpServletResponse.SC_NOT_FOUND tomcat 5.0%/75 1.88E+03/458

org.springframework.web.bind.annotation.RequestMethod.POST spring 4.7%/83 2.62E+03/293

android.widget.Toast.LENGTH_SHORT android 4.5%/90 2.23E+03/377

javax.servlet.http.HttpServletResponse.SC_INTERNAL_SERVER_ERROR javaee 4.4%/93 1.33E+03/670

android.view.ViewGroup.LayoutParams.WRAP_CONTENT android 4.1%/103 3.85E+03/188

android.view.MotionEvent.ACTION_DOWN android 4.0%/110 1.01E+03/938

android.view.MotionEvent.ACTION_UP android 4.0%/110 9.28E+02/1027

android.view.View.INVISIBLE android 3.7%/118 1.92E+03/442

android.view.ViewGroup.LayoutParams.MATCH_PARENT android 3.7%/122 4.43E+03/158

javax.servlet.http.HttpServletResponse.SC_BAD_REQUEST javaee 3.7%/122 2.06E+03/413

javax.mail.Message.RecipientType.TO javaee 3.7%/122 5.60E+02/1884

android.widget.Toast.LENGTH_LONG android 3.5%/131 1.55E+03/570

org.apache.http.HttpStatus.SC_OK httpcore 3.5%/132 1.62E+03/546

Table 21

Top 20 popular classes from the third-party APIs.

Classes Library RPc/Rank SOc/Rank

org.junit.Test junit4 60.6%/25 7.81E+05/7

org.junit.Before junit4 42.5%/43 4.66E+04/83

org.slf4j.Logger slf4j 29.1%/74 5.68E+04/68

org.slf4j.LoggerFactory slf4j 28.8%/75 5.25E+04/75

org.junit.After junit4 28.4%/81 1.82E+04/231

org.junit.Assert junit4 26.2%/89 2.86E+05/15

org.junit.runner.RunWith junit4 25.9%/91 2.51E+04/167

javax.servlet.http.HttpServletRequest servlet 21.5%/118 5.43E+04/72

javax.servlet.http.HttpServletResponse servlet 20.1%/123 4.56E+04/85

org.junit.BeforeClass junit4 19.8%/125 1.23E+04/336

junit.framework.TestCase junit3 19.8%/128 4.02E+04/98

org.junit.Ignore junit4 18.4%/142 1.04E+04/397

junit.framework.Assert junit3 16.8%/153 1.05E+05/40

org.junit.AfterClass junit4 14.1%/177 7.27E+03/356

org.apache.commons.io.IOUtils commons 14.0%/178 9.52E+03/437

com.google.common.collect.Lists guava 13.9%/181 3.16E+04/124

org.apache.commons.io.FileUtils commons 13.8%/182 1.03E+04/399

org.apache.commons.lang.StringUtils commons 13.4%/187 2.49E+04/169

javax.servlet.http.HttpServlet javaee 13.1%/193 5.24E+03/734

javax.servlet.ServletRequest javaee 10.7%/219 5.13E+03/744

F

t

2

e

o

d

c

t

a

s

s

h

t

j
v

V

c

u

i

p

Table 22

Top 20 popular methods from the third-party APIs.

Methods

org.junit.Assert.assertEquals(java.lang.Object, java.lang.Object

org.junit.Assert.assertTrue(boolean)

org.junit.Assert.assertEquals(long, long)

org.junit.Assert.assertNotNull(java.lang.Object)

org.junit.Assert.assertFalse(boolean)

org.slf4j.LoggerFactory.getLogger(java.lang.Class)

org.junit.Assert.fail(java.lang.String)

org.junit.Assert.assertNull(java.lang.Object)

org.slf4j.Logger.info(java.lang.String)

junit.framework.Assert.assertTrue(boolean)

org.junit.Assert.assertTrue(java.lang.String, boolean)

junit.framework.Assert.assertEquals(java.lang.String, java.lang

junit.framework.Assert.assertEquals(int, int)

org.slf4j.Logger.error(java.lang.String, java.lang.Throwable)

org.slf4j.Logger.debug(java.lang.String)

org.mockito.Mockito.mock(java.lang.Class)

junit.framework.Assert.assertEquals(java.lang.Object, java.lan

org.slf4j.Logger.warn(java.lang.String)

org.mockito.Mockito.when(java.lang.Object)

org.slf4j.Logger.error(java.lang.String)
ig. 11(a) demonstrates the results. Only libraries containing more

han one version adopted are shown in the figure. Among them,

.9% (149/5196) of the libraries have over 20 different versions

mployed across the corpus. The library with maximum number

f versions, org.eclipse.jetty:jetty-server, contains 76

istinct versions that are adopted by various software projects. We

arefully check 149 libraries and find that most of them are hot

hird-party libraries. This stems from the fact that these libraries

re popular and the lifecycle of releasing a new version is much

horter than unpopular libraries. Most libraries contain 2–20 ver-

ions in general.

We also select some representative libraries to demonstrate

ow distinct versions are adopted. Fig. 11(b)–(d) show the distribu-

ions of multiple versions usage from three widely-used libraries:

unit, guava and android. Regarding the junit, 25 distinct

ersions are adopted where over 1/3 of projects select version 4.11.

ersions of 4.10, 4.9 and 4.8.∗ were also popular among the library

onsumers. It is interesting that many projects still insist on the

se of old junit3, especially 3.8.1. This may be due to junit4
ntroduced many new features and provided an entirely new ap-

roach to define test cases. Migrating large projects from junit3
Library RPm/Rank SOm/Rank

) junit4 41.5%/49 4.26E+05/5

junit4 38.6%/62 2.36E+05/15

junit4 36.2%/73 2.75E+05/11

junit4 29.3%/109 9.97E+04/30

junit4 28.4%/120 8.33E+04/40

slf4j 27.2%/132 4.99E+04/70

junit4 23.8%/163 5.06E+04/69

junit4 23.1%/166 3.89E+04/94

junit4 21.7%/176 4.42E+04/80

junit3 21.5%/180 1.14E+05/27

junit4 21.2%/187 5.17E+04/67

.String) junit3 20.5%/193 1.45E+05/20

junit3 19.2%/208 1.35E+05/22

slf4j 19.1%/214 2.81E+04/133

slf4j 19.0%/215 4.80E+04/76

mockito 17.1%/243 5.50E+04/61

g.Object) junit3 16.9%/250 1.12E+05/28

slf4j 16.4%/262 1.44E+04/260

mockito 16.1%/271 9.82E+04/32

slf4j 15.6%/286 1.55E+04/244

96 D. Qiu et al. / Information and Software Technology 73 (2016) 81–100

Table 23

Top popular subordinative API entities correspond to top 10 packages.

Packages [Rank(RPp)] Top five subordinative API entities [Rank(RP)]

org.junita [5] Classes: Test [25], Before [43], After [81], Assert [89], BeforeClass [125]

Methods: Assert.assertEquals(java.lang.Object, java.lang.Object) [49], Assert.assertTrue(boolean) [62], Assert.assertEquals(long,long)

[73], Assert.assertNotNull(java.lang.Object) [109], Assert.assertFalse(boolean) [120]

junit.framework [10] Classes: TestCase [128], Assert [153], Test [276], TestSuite [280], AssertionFailedError [551]

Methods: Assert.assertTrue(boolean)[180], Assert.assertEquals(java.lang.String, java.lang.String) [193], Assert.assertEquals(int, int)

[208], Assert.assertEquals(java.lang.Object, java.lang.Object) [250], Assert.assertNotNull(java.lang.Object) [302]

Fields: TestResult.fErrors [7364], TestResult.fFailures [8291], TestSuite.fTests [11052], ComparisonFailure.fActual [11052],

ComparisonFailure.fExpected [11052]

org.slf4j [13] Classes: Logger [74], LoggerFactory [75], MDC [2796], Marker [2987], ILoggerFactory [3406]

Methods: LoggerFactory.getLogger(java.lang.Class) [132], Logger.info(java.lang.String) [176],

Logger.error(java.lang.String,java.lang.Throwable) [214], Logger.debug(java.lang.String) [215],

Logger.warn(java.lang.String) [262]

org.junit.runner [16] Classes: RunWith [91], Parameterized.Parameters [361], Parameterized [367], Suite [472], Description [489]

Methods: ParentRunner.getTestClass() [3555], Description.getMethodName() [3631], Description.getDisplayName() [6812],

ParentRunner.run(org.junit.runner.notification.RunNotifier)[7567], Description.getTestClass() [7618]

Fields: MethodSorters.NAME_ASCENDING [1742], MethodSorters.JVM [11052], Description.EMPTY [14189],

Description.TEST_MECHANISM [22882]

com.google.common.collect [23] Classes: Lists [181], Maps [229], Sets [253], ImmutableList [279], Iterables [292]

Methods: Lists.newArrayList() [531], Maps.newHashMap() [615], List.newArrayList(java.lang.Object[]) [640],

Lists.newArrayList(java.lang.Iterable) [713], Sets.newHashSet() [811]

Fields: BoundType.CLOSED [5625], BoundType.OPEN [5625], MapMaker.useCustomMap [11052], MapMaker.keyStrength [11052],

MapMaker.valueStrength [11052]

org.apache.commons.io [25] Classes: IOUtils [178], FileUtils [182], FilenameUtils [588], LineIterator [3298], Charsets [5190]

Methods: FileUtils.deleteDirectory(java.io.File) [940], IOUtils.toString(java.io.InputStream) [959],

IOUtils.copy(java.io.InputStream, java.io.OutputStream) [977], IOUtils.closeQuietly(java.io.InputStream) [992],

FileUtils.readFileToString(java.io.File) [1309]

Fields: Charsets.UTF_8 [3106], IOCase.INSENSITIVE [4572], IOUtils.LINE_SEPARATOR [5181], IOUtils.LINE_SEPARATOR_UNIX [8291],

FileUtils.ONE_MB [14189]

com.google.common.base [27] Classes: Function [246], Joiner [285], Predicate [312], Preconditions [319], Charsets [393]

Methods: Joiner.on(java.lang.String) [760], Joiner.join(java.lang.Iterable) [795], Preconditions.checkNotNull(java.lang.Object) [827],

Preconditions.checkArgument(boolean, java.lang.Object) [935], Preconditions.checkNotNull(java.lang.Object,

java.lang.Object) [1059]

Fields: Charsets.UTF_8 [51], CharMatcher.WHITESPACE [2034], CaseFormat.UPPER_CAMEL [2177], Charsets.US_ASCII [2274],

CaseFormat.LOWER_CAMEL [2470]

org.mockito [28] Classes: Mockito [274], Mock [314], ArgumentCaptor [509], MockitoAnnotations [585], Matchers [855]

Methods: Mockito.mock(java.lang.Class) [243], Mockito.when(java.lang.Object) [271], Mockito.verify(java.lang.Object) [396],

Mockito.verify(java.lang.Object, org.mockito.verification.VerificationMode) [541], Matchers.any(java.lang.Class) [544]

Fields: Mockito.RETURNS_DEEP_STUBS [2367], Mockito.CALLS_REAL_METHODS [3962], Mockito.RETURNS_MOCKS [6093],

Mockito.RETURNS_SMART_NULLS[116736], Answers.RETURNS_SMART_NULLS [116736]

org.hamcrest [31] Classes: Description [465], Matcher [497], BaseMatcher [919], Matchers [933], TypeSafeMatcher [1264]

Methods: CoreMatchers.is(java.lang.Object) [706], CoreMatchers.equalTo(java.lang.Object) [920],

MatcherAssert.assertThat(java.lang.Object, org.hamcrest.Matcher) [1070], Matchers.is(java.lang.Object) [1099],

Matchers.equalTo(java.lang.Object) [1247]

org.apache.commons.lang [33] Classes: StringUtils [187], ArrayUtils [574], StringEscapeUtils [629], RandomStringUtils [1307], NotImplementedException [1595]

Methods: StringUtils.isEmpty(java.lang.String) [949], StringUtils.isBlank(java.lang.String) [1044],

StringUtils.isNotBlank(java.lang.String) [1216], StringUtils.join(java.util.Collection, java.lang.String) [1602],

StringUtils.join(java.lang.Object[], java.lang.String) [1647]

Fields: StringUtils.EMPTY [510], SystemUtils.IS_OS_WINDOWS [2232], SystemUtils.LINE_SEPARATOR [3470],

ArrayUtils.EMPTY_STRING_ARRAY [3808], SystemUtils.IS_OS_LINUX [4572]

a No fields are defined in this package. The same situation occurs in package org.slf4j and org.hamcrest.

n

a

l

s

g

6

p

A

s

t

to junit4 requires massive code rewriting and refactoring. Re-

garding the guava, 32 versions in total are adopted across our

corpus. Distinguished from junit, its usage scatters in more dis-

tinct versions. Most projects select stable releases (e.g. 15.0 and

18.0) instead of release candidates (e.g. 14.0_rc3 and 18.0_rc1). It

is unexpected that the usage of 14.0.1 is more frequent than its

subsequent versions (e.g. 15.0–18.0). Regarding the android, 31

versions are adopted where its version adoptions are more con-

centrated, especially on 4.0.1.2.

The above cases indicate that programmers are cautious about

selecting concrete versions. Projects do not employ the newest ver-

sion of the library in most cases because of the concern on stabil-

ity, robustness and security. Various projects conservatively select

previous stable release instead. Higher popularity of a specific li-

brary version indicates higher maturity to some extent. It is sig-
 d
ificant to remind programmers to switch to the proper version at

n appropriate time by monitoring the usage distribution of the

ibrary of various versions over time. For projects starting from

cratch, it is also vital to recommend the proper version to pro-

rammers.

. Applications

Our work and results offer a number of insights, inspiring some

otential applications:

PI design and restriction. Recent studies have shown that open-

ource API libraries have been one of the most influential factors

hat affect the selection of programming languages [5]. Well-

esigned, easy-to-use APIs definitely induce higher acceptances

D. Qiu et al. / Information and Software Technology 73 (2016) 81–100 97

●

●
●

●
●
●
●
●

●
●●

●
●●
●
●●●
●●
●
●
●●
●
●●
●
●●
●
●
●●●●
●●●
●●●●●
●●●●●●●●●●
●●●●●●
●●●●●●●
●●●●
●●●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●●
●●
●●●
●●

●●●
●●

●●●
●●●

●●●

0
2

0
4

0
6

0
8

0

0 1000 2000 3000 4000 5000

(a) Distinct Libraries

#
 V

e
rs

io
n

s

0
%

1
0

%
2

0
%

3
0

%
4

0
%

3
.7

3
.8

3
.8

.1
3
.8

.2
4
.0

4
.1

4
.2

4
.3

4
.3

.1
4
.4

4
.5

4
.6

4
.7

4
.8

4
.8

.1
4
.8

.2
4
.9

4
.1

0
−

H
1

4
.1

0
4

.1
1

4
.1

2
−

b
1

4
.1

2
−

b
2

4
.1

2
−

b
3

4
.1

2
5
.0

(b) JUnit versions

%
 P

ro
je

c
ts

0
%

5
%

1
0

%
1

5
%

2
0

%
r0

3
r0

5
r0

6
r0

7
r0

8
r0

9
1

0
.0

−
rc

2
1

0
.0

−
rc

3
1
0
.0

1
0
.0

.1
1
1
.0

1
1
.0

.1
1
1
.0

.2
1

2
.0

−
rc

1
1

2
.0

−
rc

2
1
2
.0

1
2
.0

.1
1

3
.0

−
rc

1
1
3
.0

1
3
.0

.1
1

4
.0

−
rc

1
1

4
.0

−
rc

2
1

4
.0

−
rc

3
1
4
.0

1
4
.0

.1
1
5
.0

1
6

.0
−

rc
1

1
6
.0

1
6
.0

.1
1
7
.0

1
8

.0
−

rc
1

1
8
.0

(c) Guava versions

%
 P

ro
je

c
ts

0
%

5
%

1
0

%
1

5
%

2
0

%
1

.0
_

r1
1

.5
_

r3
1

.5
_

r4
1

.6
_

r2
1

.6
_

r3
2

.1
_

r1
2
.1

.2
2

.2
_

r2
2

.2
_

r3
2
.2

.1
2
.3

.1
2
.3

.3
3

.0
_

r1
3

.1
_

r3
3

.2
_

r1
4
.0

.1
.2

4
.0

.3
_

r2
4

.0
.3

_
r3

4
.1

.2
_

r4
4

.1
_

r2
4
.1

.1
.4

4
.2

.2
_

r2
4

.2
_

r1
4

.3
.1

_
r3

4
.3

_
r1

4
.3

_
r2

4
.4

.2
_

r2
4

.4
.2

_
r3

4
.4

.2
_

r4
4

.4
_

r1
5

.0
_

r1

(d) Android versions

%
 P

ro
je

c
ts

Fig. 11. (a) shows the third-party libraries usage distribution w.r.t. their versions. (b) junit, (c) guava and (d) android are three cases that demonstrate how libraries

are used across multiple versions.

f

t

a

p

i

a

p

d

o

r

t

u

t

w

m

(

t

r

u

t

l

r

a

s

l

w

a

t

n

b

d

b

j
p

t

h

t

t

s

p

a

A

h

O

t

i

r

d

e

c

t

o

i

r

o

c

p

t

a

c

f

L

p

a

i

a

i

d

d

p

a

b

f

o

a

b

s

d

L

t

f

f

i

i

o

c

rom programmers. However, current API design is usually artis-

ic, driven by the aesthetic concerns and intuitions of language

rchitects. Designers usually have limited knowledge on how

rogrammers actually use an API. As more open-source repos-

tories have been publicly available, understanding how APIs

re employed is critical. We investigate the API usage from the

erspectives of frequency, popularity and coverage, and expect API

esigners to improve the designs via a data-driven approach. Based

n our empirical results, we make an attempt to provide some

ecommendations to the API designers: (1) be cautious to modify

he interfaces of those API entities with high popularity, as such

pdates may cause a wider influence to current software systems

hat depend on them; (2) give more emphasis to API entities

ith high frequency and optimize their implementations, as they

ay be the key elements that affect the system’s performance;

3) do not neglect API entities with low coverage; reconstruct

hem, e.g. generate more efficient compact profiles to exclude

arely covered packages, or re-layout the packages with many

ncovered classes and move them to the optional sections, to keep

he API succinct; for API entities that are rarely used (with both

ow frequency and popularity) in practice, identify the possible

eason and consider how to simplify/optimize/re-design them. In

ddition, monitoring API usage from core library vs. functionality

ubstitutable third-party libraries (e.g. Java Date vs. Joda time

ibrary10) can also help designers of the core API identify the

eak spots precisely. Introducing and integrating well-designed

nd widely-used third-party libraries into the core API through

he API usage data can cater for most of the programmers’

eeds.

API libraries contain not only good features, but also

ad features. Poorly-designed API entities inevitably in-

uce programmers to write bad code, which proba-

ly impact the quality of the software. Take method

ava.lang.String.substring(int,int) as an exam-

le, its usage may lead to memory leak11 prior to Java 6. Normally,

hese buggy API entities are not encouraged to adopt before they

ave been fixed. In order to prevent programmers from abusing

hese features, restricting the use of certain API entities that con-

ain bad features is indispensable. We can learn and construct such

ubset (without restricted API entities) for given requirements (e.g.

erformance, reliability, security) from high-quality practical code

nd enforce their proper use.

PI compact profile construction. As features and functionalities

ave been introduced continuously, the footprint of the core API
10 The design of standard date classes from the core API prior to Java 8 is poor.

n-line discussions suggest that Joda API is the priority for programmers. Then,

he core API integrates Joda and create a new Time API since Java 8.
11 http://bugs.java.com/view_bug.do?bug_id=6294060 .

T

h

c

t

t

s becoming gigantic and complex, gradually raising the minimum

equirements for devices. The usage of compact profiles indeed re-

uces the consumption of resources for some applications. How-

ver, we discover that about two fifths of the projects within our

orpus still require to load the entire core API. In addition, among

he projects that require CP2 to correctly compile and run, the use

f the API entities from CP2(A) is tiny. Similar behaviors are found

n projects that require CP3 or Full profiles. The design of cur-

ent compact profiles is more driven by the functionality partitions

n packages. However, from the perspective of reducing resource

onsumption, the utilization of the compact profiles is low in

ractice.

As we have obtained the data on how projects employ API en-

ities, better compact profiles can be computed via a data-driven

pproach. By analyzing the behaviors of co-used API entities (espe-

ially packages), we can generate leaner compact profiles to ensure

ewer resources are consumed by most projects.

ibrary recommendation. Software projects highly depend on third-

arty libraries, and the size of the dependencies is large. Manu-

lly selecting appropriate libraries is a burdensome work. Our data

nvolve rich co-use information on API libraries (e.g. Projects that

dopt commons-io often adopt commons-lang). Through min-

ng association rules of library usage from a large corpus, it is not

ifficult to recommend best-fit candidates based on other project

ependencies in use. In addition, Milena et al. proposed an ap-

roach, based on the popular vote of the majority, that recommends

most suitable version (i.e. with a higher usage) for a given li-

rary by monitoring the usage trend of all versions [1]. Different

rom their solution, our approach is more straightforward. Based

n the library version co-use information (e.g. commons-io:2.4
nd commons-lang:3.1 are often adopted simultaneously

y projects), we can suggest a library with its proper ver-

ion, which can also avert version conflicts among multiple

ependencies.

anguage API education. Novice programmers are disorientated by

he large (and ever-growing) API libraries easily. API entities with

requent usage and high coverage in practice usually indicate their

undamentality and importance to the entire API library. Identify-

ng the essence of the APIs is essential as it suggests a direct start-

ng point for API learners. Hence, to improve the understandability

f an API, it is significant to embed the statistics of API frequency,

overage and popularity into its corresponding API documentation.

o some extent, it guides novice programmers to quickly identify

otspots of the APIs, and also alert programmers to use coldspots

autiously in practical development.

Besides, novice programmers are more likely to make mis-

akes when they learn to employ new API libraries, e.g. choose

he right methods from the alternatives within an API library [4].

https://vpn2.seu.edu.cn/,DanaInfo=bugs.java.com+view_bug.do?bug_id=6294060

98 D. Qiu et al. / Information and Software Technology 73 (2016) 81–100

S

d

I
h

u

i

i

t

c

m

c

c

r

s

a

@
o

a

H

w

g

o

o

E

w

l

fi

a

a

a

v

b

8

A

t

J

i

O

m

s

u

r

r

p

A

p

O

s

a

c

t

t

A

w

s

e

l

d

d

W

l

m

Understanding such potential correlation (i.e. the use of some API

entity tends to make novices write buggy code) and identifying

these error-prone API entities are valuable to API learners. Hence,

it would be interesting to link the usage of API entities with bugs

that have been fixed and recorded in bug repositories to statisti-

cally investigate how the usage of API entities correlates with code

quality. Timely alert to both novices and experienced developers

to these “risky” entities before employing them, or recommending

them alternative, easy-to-use candidates are both effective mea-

sures to avoid introducing unnecessary defects. The mined corre-

lations are also strong evidence for API restriction.

7. Threats to validity

Construct validity. The construct validity of our study rests on the

measurements performed, in particular related to the corpus con-

struction, dependency resolution and API entity resolution.

Regarding the corpus construction, we select and download

over 5000 projects with diverse characteristics, such as project

sizes and domains. All projects are obtained from GitHub, one of

the most popular and widely-used project hosting services, that

hosts massive amounts of git-based projects. The reason we se-

lect Git is that it offers great convenience on checking out multiple

snapshots. Thus, there is no indication that the projects we select

are biased toward any specific project type. In addition, all projects

within the corpus are managed by Maven, one of the most widely-

used Java build tool. The reason we select Maven is that it facili-

tates the acquisition of all dependencies by projects automatically.

Similarly, projects in the corpus are selected based on given crite-

ria. The selection process does not involve our own human bias.

Regarding the dependency resolution, as Maven manages ev-

ery project in our corpus, developers are supposed to list all re-

quired dependencies and associated remote repositories that can

retrieve these dependencies in the projects’ Maven configuration

files. However, not all the dependencies can be retrieved from

given repositories since some of them are not available or accessi-

ble on the Internet. As a reparative strategy, we manually supple-

ment some popular and recognized repositories to mitigate such

issue. In our effort, only 4% of dependencies are not resolved cor-

rectly. The percentage is insignificant and it does not affect the re-

sults of dependency analysis.

The failure of obtaining all required dependencies inevitably re-

sults in the failure of correctly resolving some of the API entities

adopted by the project. However, based on the above strategy, we

only find 0.06% of the classes, 2.27% of the methods and 0.18% of

the field in use are not resolved correctly. Compared to the study

by Lämmel et al. [16], the percentage of failed resolution in our

study has been reduced significantly, which is an acceptable rate

and does not impact the results.

Internal validity. We identify some uncontrollable factors that may

have affected the results of our API usage analysis. One possible

factor is language and API constraints. On one hand, some language

conventions potentially expand the use of some API entities. For

example, if one project contains a main method, it implies that the

class java.lang.String is being employed, even if there is no

manipulation on this string object. We check all 5185 projects and

discover that, 38.9% of them contain at least one main method,

and the total size of the main methods is small. It has little in-

fluence on the popularity and frequency of java.lang.String,

since this class is mainly used in non-main methods. Exception

handling is another language constraint that might affect the use

of exception-related classes. For example, when a programmer uses

class java.io.FileReader to read data from a file, he is forced

to catch the checked exceptions, e.g. java.io.IOException
in this case, even if there is no operation on this object.
uch statically declared exceptions demanded by exception han-

le mechanism indeed increase the use of exception classes, like

OException which is highly ranked in Table 10. On the other

and, the architectural constraints might decrease or eliminate the

se of some “special classes” that are not intended to be explic-

tly declared in the code. As an example, JDBC-drivers are not

nstantiated by programmers by declaring the driver classes, but

o pass a name to the classloader which then instantiates the

lass through the reflection mechanism. In the case of a state-

ent Class.forName(”com.mysql.jdbc.Driver”);, the

lass com.mysql.jdbc.Driver never appear directly in the

ode, which is also ignored by our analysis process. Since

eflection-related API entities are widely used, this might have

ome effect on the statistics of these “special classes”.

Another factor is related to the use of IDEs. Modern IDEs, such

s Eclipse directly generate build-in annotations in the code, e.g.

Override, whenever a class does override a method. This is one

f the most important reasons that annotations like @Override
nd @SuppressWarnings are among top 20 popular classes.

owever, it is difficult to distinguish whether such annotations are

ritten by programmers or auto generated by IDEs. Involving the

enerated annotations, which are not real programmers’ behaviors

f using API entities, does have some impact on the actual usage

f annotation-related classes.

xternal validity. Threats to external validity are concerned with

hether the results are applicable in general. In this study, we se-

ect over 5000 most popular Java projects to obtain the general

ndings of language API usage. However, projects under analysis

re all from open-source community, developed in Java, and man-

ged by Maven. It would be desirable to analyze more varieties of

pplications (e.g. enterprise applications), developed in more di-

erse programming languages (e.g. C++) and managed by distinct

uild tools (e.g. Ivy and Gradle) to confirm our general conclusions.

. Related work

PI usage analysis. To some extent, our work is analogous

o [16,31]. Homan et al. studied the usage of the API entities from

ava standard API over 39 projects [31]. Our study conducts a sim-

lar experiment on a larger corpus (containing over 5000 projects).

ur results demonstrate that 15.3% of the classes and 41.2% of the

ethod are not used at all, which is inconsistent with their results

howing that 50% of the classes and 80% of the methods are never

sed. The coverage highly depends on the corpus scale. Both of the

esults are reasonable as the corpus sizes differ. Nevertheless, our

esults seem to be more convincing to readers because our cor-

us is much larger than theirs. Lämmel et al. also conducted an

ST-based API-usage analysis on 1, 639 projects, including API foot-

rint analysis, coverage analysis and framework-like API usage [16].

ur work involves similar analysis, but differs in several dimen-

ions: (1) they manually downloaded the missing dependencies

nd used the shared libraries to make projects buildable. Signifi-

antly different from their approach, we automatically download

he dependency libraries that each project requires, with the assis-

ant of Maven. This approach greatly improves the precision of the

PI usage resolution and make our results more trustworthy; (2)

e design more comprehensive and systematical metrics to mea-

ure the API usage; (3) we study both core API and third-party APIs

xhaustively, including many extra interesting angles, e.g. the uti-

ization of the compact profiles in the core API, the usage of the

eprecated API entities and version issue of third-party APIs. In ad-

ition, some studies focused on the usage of Eclipse APIs [32,33].

e do not concentrate on one concrete API library and try to ana-

yze almost all API libraries that are covered by our corpus. Thum-

alapenta and Xie proposed a code-search-engine-based approach

D. Qiu et al. / Information and Software Technology 73 (2016) 81–100 99

t

p

c

c

p

e

t

S

i

v

a

A

i

w

r

p

w

p

t

n

s

M

c

j

S

u

a

t

S

r

a

c

a

t

o

T

f

u

u

c

s

l

n

T

w

o

c

s

t

l

9

a

p

t

p

t

c

t

u

t

w

p

o

g

s

a

(

q

t

A

d

R

S

U

R

[

[

[

[

hat detects API hotspots and coldspots [28] by mining code exam-

les gathered from open-source repositories on the web. We also

onduct this similar study through a completely different way, i.e.

ounting the API usage from the resolved ASTs.

API usage analysis has also inspired many applications, e.g. im-

rove the usability of APIs [34,35], recommending the use of API

ntities [36], libraries [37] and versions [1], facilitating API migra-

ions [6–11] and supporting software maintenance [12].

tudies of API properties. Much of the recent research has exam-

ned a multitude of API properties, e.g. stability [38,39], usage di-

ersity [40] and usability [27,41,42]. McDonnell et al. conducted

n in-depth case study on co-evolution behaviors of android
PI and dependent applications to understand the API stabil-

ty [38]. They found 28% of API references in client applications

ere outdated with a median lagging time of 16 months. Our

esults also confirm that libraries with distinct versions are em-

loyed by projects simultaneously. The newest release is not al-

ays the preferred choice for programmers. Raemaekers et al. pro-

osed four metrics (i.e. the weighted number of removed methods,

he amount of changes in existing methods, the ratio of changes in

ew to old methods and the ratio of new methods) to calculate the

tability of public interfaces and implementations of a library [39].

endez et al. studied API usage diversity (i.e. the different stati-

ally observable combinations of methods called on the same ob-

ect), and found significant usage diversity for many classes [40].

tylos and Myers found that method placement can have large

sability impact in object-oriented APIs [41]. We believe our API

nalysis data can also assist in the studies of similar API proper-

ies.

tudies of software characteristics. As more open-source reposito-

ies (e.g. Github, Sourceforge and Bitbucket) have been publicly

vailable, many researchers have started to understand software

haracteristics through empirical approaches. Dyer et al. conducted

large-scale study on Java features usage from the perspective of

he language syntax [43]. Baxter et al. presented an in-depth study

n the structures of Java programs by analyzing 56 projects [25].

hey measured several key structural attributes to ascertain if they

ollow the power-laws. Likewise, Grechanik et al. mined structure

sage in more than 2000 Java projects [44]. Gabel and Su studied

niqueness that software generally lacks uniqueness which most

ode snippets that developers write already exist [45]. Hindle et al.

tudied naturalness that the actual code is regular and predictable,

ike natural language utterances [46]. They followed the unique-

ess study and confirmed the software “syntactic redundancy”.

u et al. further studied the localness that human-written programs

ere localized [47]. They introduced a cache language model that

ptimized the n-gram model by involving local regularities of the

ode to improve code suggestion accuracy. Other than the above

tudies that analyzed the language usage from the lexical or syn-

actic level, we study the language from another view, i.e. the API

evel.

. Conclusion and future work

This paper has presented a large-scale study of how Java’s APIs

re used in practice by analyzing more than 5000 open-source Java

rojects. Our study has exposed interesting quantitative informa-

ion to help understand how APIs from the core library and third-

arty libraries have been used. There are several interesting direc-

ions for future work. In detail, we plan to (1) conduct a more

omprehensive study on a variety of other programming languages

o increase the external validity of our findings; (2) analyze API

sage under more scenarios: how are API entities co-used in prac-

ice (e.g. what API entities co-occur frequently); how are they used
ithin certain syntactic structures (e.g. what API methods are em-

loyed frequently in nested loops); (3) apply our empirical data to

ptimize the design and construction of API libraries, especially to

enerate better compact profiles that minimize the resource con-

umption for devices; (4) investigate the possibility of adopting the

ctual API usage data to facilitate API-based code recommendation;

5) understand how the usage of API entities correlates with code

uality (e.g. defect rate), and mine such correlations for API restric-

ion and education.

cknowledgments

The work is supported by the National Natural Science Foun-

ation of China under grant no. 61572126, the Huawei Innovation

esearch Program (HIRP) under grant no. YB2013120195 and the

cientific Research Foundation of Graduation School of Southeast

niversity grant no. YBJJ1313.

eferences

[1] Y.M. Mileva, V. Dallmeier, M. Burger, A. Zeller, Mining trends of library usage,
in: Proceedings of the Joint International and Annual ERCIM Workshops on

Principles of Software Evolution and Software Evolution Workshops (IWPSE-

Evol), 2009, pp. 57–62.
[2] U. Sandberg, Tired of Date and Calendar?http://www.jayway.com/2006/09/16/

tired-of-date-and-calendar/ (accessed 10.04.15).
[3] Your Language Sucks. https://wiki.theory.org/YourLanguageSucks (accessed

10.04.15).
[4] M. Robillard, What makes APIs hard to learn? Answers from developers, IEEE

Softw. 26 (6) (2009) 27–34.
[5] L.A. Meyerovich, A.S. Rabkin, Empirical analysis of programming language

adoption, in: Proceedings of the ACM SIGPLAN International Conference on

Object Oriented Programming Systems Languages & Applications (OOPSLA),
2013, pp. 1–18.

[6] J.Y. Gil, I. Maman, Micro patterns in Java code, in: Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems,

Languages, and Applications (OOPSLA), 2005, pp. 97–116.
[7] H. Zhong, T. Xie, L. Zhang, J. Pei, H. Mei, MAPO: mining and recommending API

usage patterns, in: Proceedings of the 23rd European Conference on Object-

oriented Programming (ECOOP), 2009, pp. 318–343.
[8] G. Uddin, B. Dagenais, M.P. Robillard, Temporal analysis of API usage concepts,

in: Proceedings of the 34th International Conference on Software Engineering
(ICSE), 2012, pp. 804–814.

[9] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, D. Zhang, Mining succinct and high-
coverage API usage patterns from source code, in: Proceedings of the 10th IEEE

Working Conference on Mining Software Repositories (MSR), 2013, pp. 319–

328.
[10] H.A. Nguyen, T.T. Nguyen, G. Wilson Jr., A.T. Nguyen, M. Kim, T.N. Nguyen, A

graph-based approach to API usage adaptation, in: Proceedings of the 25th
Annual ACM SIGPLAN Conference on Object Oriented Programming Systems

Languages and Applications (OOPSLA), 2010, pp. 302–321.
[11] M. Nita, D. Notkin, Using twinning to adapt programs to alternative APIs, in:

2010 ACM/IEEE 32nd International Conference on Software Engineering (ICSE),

2010, pp. 205–214.
[12] V. Bauer, L. Heinemann, Understanding API usage to support informed decision

making in software maintenance, in: Proceedings of the 16th European Confer-
ence on Software Maintenance and Reengineering (CSMR), 2012, pp. 435–440.

[13] Maven. http://maven.apache.org/ (accessed 10.04.15).
[14] J. Cocke, V. Markstein, The evolution of RISC technology at IBM, IBM J. Res.

Dev. 34 (1) (1990) 4–11.

[15] Java SE. http://www.oracle.com/technetwork/java/javase/ (accessed 10.04.15).
[16] R. Lämmel, E. Pek, J. Starek, Large-scale, AST-based API-usage analysis of open-

source Java projects, in: Proceedings of the 2011 ACM Symposium on Applied
Computing (SAC), 2011, pp. 1317–1324.

[17] Eclipse EGit. http://www.eclipse.org/egit/ (accessed 10.04.15).
[18] Eclipse Aether. http://eclipse.org/aether/ (accessed 10.04.15).

[19] Maven API. http://maven.apache.org/ref/3.3.1/index.html (accessed 10.04.15).

20] Eclipse JDT. http://www.eclipse.org/jdt/ (accessed 10.04.15).
[21] Apache Commons BCEL. https://commons.apache.org/proper/commons-bcel/

(accessed 10.04.15).
22] W. Lim, Effects of reuse on quality, productivity, and economics, IEEE Softw. 11

(5) (1994) 23–30.
23] L. Heinemann, Effective and Efficient Reuse with Software Libraries, Technische

Universität München, 2012 Ph.D. thesis.
[24] R. Wheeldon, S. Counsell, Power law distributions in class relationships, in:

Third IEEE International Workshop on Source Code Analysis and Manipulation,

2003. Proceedings, 2003, pp. 45–54.
25] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser, H. Melton,

E. Tempero, Understanding the shape of Java software, in: Proceedings of the
21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Sys-

tems, Languages, and Applications (OOPSLA), 2006, pp. 397–412.

https://vpn2.seu.edu.cn/10.13039/,DanaInfo=dx.doi.org+501100001809
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0001
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0001
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0001
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0001
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0001
https://vpn2.seu.edu.cn/2006/09/16/tired-of-date-and-calendar/,DanaInfo=www.jayway.com+
https://vpn2.seu.edu.cn/,DanaInfo=wiki.theory.org,SSL+YourLanguageSucks
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0002
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0002
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0003
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0003
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0003
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0004
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0004
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0004
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0005
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0005
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0005
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0005
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0005
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0005
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0006
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0006
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0006
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0006
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0007
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0007
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0007
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0007
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0007
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0007
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0007
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0008
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0008
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0008
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0008
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0008
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0008
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0008
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0009
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0009
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0009
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0010
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0010
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0010
https://vpn2.seu.edu.cn/,DanaInfo=maven.apache.org+
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0011
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0011
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0011
https://vpn2.seu.edu.cn/technetwork/java/javase/,DanaInfo=www.oracle.com+
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0012
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0012
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0012
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0012
https://vpn2.seu.edu.cn/egit/,DanaInfo=www.eclipse.org+
https://vpn2.seu.edu.cn/aether/,DanaInfo=eclipse.org+
https://vpn2.seu.edu.cn/ref/3.3.1/,DanaInfo=maven.apache.org+index.html
https://vpn2.seu.edu.cn/jdt/,DanaInfo=www.eclipse.org+
https://vpn2.seu.edu.cn/proper/commons-bcel/,DanaInfo=commons.apache.org,SSL+
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0013
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0013
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0014
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0014
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0015
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0015
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0015
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0016
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0016
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0016
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0016
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0016
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0016
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0016
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0016
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0016

100 D. Qiu et al. / Information and Software Technology 73 (2016) 81–100

[

[26] P. Louridas, D. Spinellis, V. Vlachos, Power laws in software, ACM Trans. Softw.
Eng. Methodol. 18 (1) (2008) 2:1–2:26.

[27] J.M. Daughtry, U. Farooq, J. Stylos, B.A. Myers, API usability: CHI’2009 special
interest group meeting, in: Proceedings of the 27th International Conference

on Human Factors in Computing Systems (CHI), Extended Abstracts Volume,
2009, pp. 2771–2774.

[28] S. Thummalapenta, T. Xie, SpotWeb: detecting framework hotspots and
coldspots via mining open source code on the web, in: Proceedings of the 23rd

IEEE/ACM International Conference on Automated Software Engineering (ASE),

2008, pp. 327–336.
[29] Java Platform, Standard Edition 8 API Specification. https://docs.oracle.com/

javase/8/docs/api/(accessed 10.04.15).
[30] F. Long, D. Mohindra, R. Seacord, D. Sutherland, D. Svoboda, The CERT Oracle

Secure Coding Standard for Java, Addison-Wesley Professional, 2011.
[31] H. Ma, R. Amor, E. Tempero, Usage patterns of the Java standard API, in: Pro-

ceedings of the 13th Asia Pacific Software Engineering Conference (APSEC),

2006, pp. 342–352.
[32] J. Businge, A. Serebrenik, M.G.J.v.d. Brand, Eclipse API usage: the good and the

bad, Softw. Qual. J. 23 (2013) 107–141.
[33] R. Holmes, R.J. Walker, Informing eclipse API production and consumption, in:

Proceedings of the 2007 OOPSLA Workshop on Eclipse Technology eXchange
(ETX), 2007, pp. 70–74.

[34] J. Stylos, A. Faulring, Z. Yang, B. Myers, Improving API documentation using

API usage information, in: IEEE Symposium on Visual Languages and Human-
centric Computing (VL/HCC), 2009, pp. 119–126.

[35] C. De Roover, R. Lammel, E. Pek, Multi-dimensional exploration of API usage,
in: Proceedings of the 21st IEEE International Conference on Program Compre-

hension (ICPC), 2013, pp. 152–161.
[36] Y.M. Mileva, V. Dallmeier, A. Zeller, Mining API popularity, in: Proceedings of

the Fifth International Academic and Industrial Conference on Testing—Practice

and Research Techniques (TAIC-PART), 2010, pp. 173–180.
[37] F. Thung, D. Lo, J. Lawall, Automated library recommendation, in: Proceed-

ings of the 20th Working Conference on Reverse Engineering (WCRE), 2013,
pp. 182–191.
[38] T. McDonnell, B. Ray, M. Kim, An empirical study of API stability and adop-
tion in the android ecosystem, in: Proceedings of the 29th IEEE International

Conference on Software Maintenance (ICSM), 2013, pp. 70–79.
[39] S. Raemaekers, A. van Deursen, J. Visser, Measuring software library stability

through historical version analysis, in: Proceedings of the 28th IEEE Interna-
tional Conference on Software Maintenance (ICSM), 2012, pp. 378–387.

[40] D. Mendez, B. Baudry, M. Monperrus, Empirical evidence of large-scale diver-
sity in API usage of object-oriented software, in: Proceedings of the 13th IEEE

International Working Conference on Source Code Analysis and Manipulation

(SCAM), 2013, pp. 43–52.
[41] J. Stylos, B.A. Myers, The implications of method placement on API learnability,

in: Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, 2008, pp. 105–112.

[42] J. Bloch, How to design a good API and why it matters, in: Companion to the
21st ACM SIGPLAN Symposium on Object-oriented Programming Systems, Lan-

guages, and Applications, 2006, pp. 506–507.

[43] R. Dyer, H. Rajan, H.A. Nguyen, T.N. Nguyen, Mining billions of AST nodes to
study actual and potential usage of Java language features, in: Proceedings

of the 36th International Conference on Software Engineering (ICSE), 2014,
pp. 779–790.

44] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi, D. Poshyvanyk,
C. Fu, Q. Xie, C. Ghezzi, An empirical investigation into a large-scale Java

open source code repository, in: Proceedings of the 2010 ACM-IEEE Inter-

national Symposium on Empirical Software Engineering and Measurement
(ESEM), 2010, pp. 11:1–11:10.

[45] M. Gabel, Z. Su, A study of the uniqueness of source code, in: Proceedings of
the 18th ACM SIGSOFT International Symposium on Foundations of Software

Engineering (FSE), 2010, pp. 147–156.
[46] A. Hindle, E.T. Barr, Z. Su, M. Gabel, P. Devanbu, On the naturalness of software,

in: Proceedings of the 34th International Conference on Software Engineering

(ICSE), 2012, pp. 837–847.
[47] Z. Tu, Z. Su, P. Devanbu, On the localness of software, in: Proceedings of the

22nd ACM SIGSOFT International Symposium on Foundations of Software En-
gineering (FSE), 2014, pp. 269–280.

https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0017
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0017
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0017
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0017
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0018
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0018
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0018
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0018
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0018
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0019
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0019
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0019
https://vpn2.seu.edu.cn/javase/8/docs/api/,DanaInfo=docs.oracle.com,SSL+
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0020
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0020
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0020
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0020
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0020
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0020
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0021
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0021
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0021
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0021
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0022
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0022
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0022
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0022
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0023
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0023
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0023
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0024
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0024
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0024
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0024
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0024
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0025
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0025
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0025
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0025
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0026
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0026
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0026
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0026
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0027
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0027
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0027
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0027
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0028
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0028
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0028
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0028
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0029
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0029
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0029
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0029
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0030
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0030
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0030
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0030
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0031
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0031
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0031
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0032
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0032
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0033
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0033
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0033
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0033
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0033
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0034
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0034
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0034
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0034
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0034
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0034
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0034
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0034
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0034
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0034
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0035
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0035
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0035
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0036
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0036
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0036
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0036
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0036
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0036
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0037
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0037
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0037
https://vpn2.seu.edu.cn/S0950-5849(16)30002-7/,DanaInfo=refhub.elsevier.com+sbref0037

	Understanding the API usage in Java
	1 Introduction
	2 Methodology
	2.1 Research questions
	2.2 Gathering the corpus
	2.3 Resolving dependencies
	2.4 Collecting API usage
	2.5 Metrics
	2.6 Tool support

	3 Global analysis of API usage
	3.1 API usage provenance
	3.2 Project size vs. API usage
	3.3 API usage follows power-laws

	4 API usage of core library
	4.1 Coverage analysis
	4.2 Hotspots of API entities
	4.3 Usage of deprecated API entities
	4.4 Usage of compact profiles

	5 API usage of third-party library
	5.1 Library popularity analysis
	5.2 Hotspots of API entities
	5.3 Multiple versions analysis

	6 Applications
	7 Threats to validity
	8 Related work
	9 Conclusion and future work
	 Acknowledgments
	 References

