
Automatic Test Case Selection and Generation for Regression Testing of Composite
Service Based on Extensible BPEL Flow Graph

Bixin Li, Dong Qiu, Shunhui Ji, Di Wang
School of Computer Science and Engineering, Southeast University

Nanjing, 210096, P.R.China.
Email: bx.li@seu.edu.cn

Abstract—Services are highly reusable, flexible and loosely
coupled, which makes the evolution and the maintenance of
composite services more complex. Evolution of BPEL composite
service covers changes of processes, bindings and interfaces. In
this paper, an approach is proposed to select and generate test
cases during the evolution of BPEL composite service. The
approach identifies the changes by using control-flow analysis
technique and comparing the paths in new composite service
version and the old one using extensible BPEL flow graph (or
XBFG). Message flow is appended to the control flow so that
XBFG can describe the behavior of composite service integrally.
The binding and predicate constraint information added in
XBFG elements can be used in path selection and test case
generation. Theory analysis and case study both show that the
approach is effective, and test cases coverage rate is high for
the changes of processes, bindings and interfaces.

I. INTRODUCTION

Service-oriented integration is a main application field
of service computing, and the emergence of service com-
position technology makes the integration more convenient
and efficient. Services are highly reusable, flexible and
loosely coupled, which makes services computing more
significant in distributed computing discipline. Having these
characteristics, the evolution, together with the maintenance
of composite services take on a new look. Regression testing
of Web service is closely associated with its evolution
and maintenance. Generally speaking, once any part of
the composite service changes, regression testing must be
performed.

Among most of the composition languages, BPEL is so
popular that it becomes the de-facto standard on service
composition[1]. It integrates available services by defining
a business process, thus service composed using BPEL is
a combination of process and component services. It is
invoked the same way as a basic service through the exterior
interface exposed to users, though the inner part is more
complex and changeful. The evolution of composite service
at design and implementation level, including binding alter-
ation and process alteration, can be embodied in BPEL.

This work is partially supported by the National Nature Science Founda-
tion of China under No.60973149 and 60773105, and partially by National
High Technology Research and Development Program under Grant No.
2008AA01Z113

BPEL combines partner link and the it endpoint refer-
ence mechanism from WS-Addressing to support service
bindings[2]. Partner link establishes the relationships among
component services interacting with BPEL process and pre-
scribes the interfaces of process interacting with component
services. The services which can meet both the interface
definition and functional requirements will be regarded as
candidate services. Which endpoint the process will bind
to depends on the definition of EndpointReference.
BPEL uses <assign> activity to copy endpoint reference
to corresponding <partnerLink>. Above all, service
binding in BPEL can be achieved by assignment.

BPEL composite service is composed of a process, an
interface described in WSDL[3] and component services
interacted with the process. The component services are
either basic service or composite service, while the process
specifies behaviors between them. Therefore the evolution
of composite service may be caused by changes of process,
interface and component services.

Service integrators may change the internal structure of
process due to the need of functionality enhancement. The
addition or deletion of services, change of activities or
execution sequence all belong to process change. Once the
process has been modified, some interfaces of composite
service might be obsolete and some might have to be modi-
fied. It is interface change of composite service. These two
cases are regarded as active modification, as the motivation
is originated from service integrator. However, as component
service is usually published by other vendors so they are out
of control by the integrator. When integrators realize that the
interface or functionality has been changed, they may make
passive modification to adapt this change. For example, they
may select another candidate service to replace the changed
one. This is binding change. In conclusion, changes of
BPEL composite service can be classified into three kinds,
(1) process change, which means the BPEL modification,
(2) binding change, which means the service integrator
replaces a component service with another service having
the same functionality and interface, (3) interface change,
which usually means the WSDL modification.

Based on this classification, this paper proposes a solution
for regression test case selection and generation of BPEL

george
26th IEEE International Conference on Software Maintenance in Timișoara, Romania

george

george

george
978-1-4244-8628-1/10/$26.00 ©2010 IEEE

george

george

composite service using an extensible BPEL flow graph,
which can express the behavior of composite service in-
tegrally. The binding information and predicate constraints
are added in graph elements for path selection and test case
generation. The comparisons are made on path elements,
interfaces and path conditions so that the affected paths
could be selected. Some paths can be validated by selecting
test cases of baseline version but others may need new test
cases. The decision of whether to select or to generate is
made based on the results of several kinds of comparisons.

The rest of paper is organized as follows: Section 2 gives
an introduction to XBFG; Section 3 discusses the test case
selection and generation problem using XBFG in detail;
Section 4 gives an evaluation of this approach; Section 5
discusses a case study; Section 6 compares the related work;
Section 7 concludes the paper.

II. XBFG MODEL

A. Extended BPEL Flow Graph

BPEL Flow Graph (BFG) is a control flow model pro-
posed by Y. Yuan et al. to describe BPEL process[4].
However, the interior implementation of BPEL compos-
ite service is the combination of process and component
services interacting with the process. In order to operate
change impact analysis on composite service rather than the
process solely, we propose a model called XBFG so that
the analysis could be operated on a model representing the
whole composite service.

Formally, XBFG is defined as a triple < N, E, F >,
where N = IN ∪ NN ∪ SN ∪ EN ∪ MN ∪ CN , which
denotes the node set; E = CE ∪ ME, which denotes the
edge set; F is the field of XBFG element, element is the
general designation of node and edge. XBFG nodes are
classified into six types:

Interaction Node (IN), which is mapped from those basic
activities with which component services interact, including
<invoke>, <receive>, <reply> and <onMessage>
in <pick>.

Normal Node (NN), which is mapped from other basic
activities of BPEL, such as <assign>, <wait> and so
on. Additionally, <onAlarm> activity in <pick> is also
mapped to NN .

Service Node (SN), which is mapped from the
partnerLinks defined in BPEL, a SN represents a
component service the process interacts with.

Exclusive Node (EN), which is mapped from those struc-
tural activities providing conditional behavior, including
<if>, <pick>, <while> and <repeatUntil>. EN is
divided into Exclusive Decision Node (EDN) and Exclusive
Merge Node (EMN).

Multiple Node (MN), which is mapped from the <link>
with its <joinCondition> value equals to ”OR” or null.
MN is divided into Multiple Branch Node (MBN) and
Multiple Merge Node (MMN).

Concurrent Node (CN), which is mapped
from the <flow> activity and <link> with its
<joinCondition> value equals to ”AND”. CN
also has two forms, Concurrent Branch Node (CBN) and
Concurrent Merge Node (CMN).

Figure 1 shows the symbols of each kind of XBFG
elements.

The mapping from BPEL to BFG is limited to the process;
XBFG needs to make appropriate extension so that not only
the process, but also the component services as well as the
message exchanges between them could be integrated in this
model. Extensions are embodied in following aspects:

The first extension is that SN is added into BFG. In this
way, component services are involved in the testing.

The second extension is about the control flow. BFG
model uses edges to express control flows in BPEL. How-
ever, it can’t express how process interacts with compo-
nent services through message exchanges. XBFG keeps the
Control Edge (CE) linking the BPEL activities, and add
Message Edge (ME) linking IN and SN to denote message
calling relationship between process and its component
services.

Field F is another extension to BFG with the purpose of
facilitating the comparison of elements. Each the XBFG el-
ement has a name, id, hashcode, source, target and category
field. The name field is copied from the name attribute of the
correspondent activity. The hashcode is a multi-byte value
generated for each BPEL activity when mapping BPEL to
XBFG. The change of BPEL element could be detected by
comparing the hashcode of elements in two XBFGs. There-
fore, only those activities whose names, attributes and sub-
elements all keep the same can be regarded as unchanged.
The value of id field is a natural number generated according
to the hashcode of this node. It is unique in XBFG so it
can be regarded as the identity of the node. The reason
for distinguishing nodes by id rather than hashcode is that
same activities may exist in the same BPEL document and
their hashcodes are identical. Besides, as for the edges which
are not mapped from <link>, they have identical id only
if they have the same source node and target node. The
source and target field store set of precedent elements and
subsequent elements of this node. The category field denotes
the category of elements, such as IN , SN , CE, and so
on. In addition, some categories of elements have their
own fields. IN has EPR field, value of which is name
of the partnerLink interacting with this IN . SN has
endpoint field, value of which is physical address of this
component service. EN , MN and CN use condition field
to hold the transition condition (predicate constraint) of this
node. CE also has condition field. If the edge is mapped
from <link>, the value of condition field is the value of
<transitionCondition> in <link>.

george

(1)NN

X

(4)EDN

X

(5)EMN

V

...

(6)MBN

V

...

(8)CBN

V

...

(7)MMN

V

...

(9)CMN

(2)IN (3)SN

(10)CE (11)ME

Figure 1. Symbols of XBFG elements

B. XBFG Path

Based on XBFG, the concept of path has to be cus-
tomized and redefined accordingly. The BFG path definition
is similar to the traditional CFG path, which is a sequential
list of nodes. However, node sequence is not enough for
change impact analysis of BPEL composite service. There
are several reasons for this: firstly, condition of CE might
be modified so that path should contain edges also; secondly,
component services and messages exchanged between pro-
cess should be considered as not only the binding of partners
but the message order has the possibility to be changed;
thirdly, it may encounter some difficulties when expressing
paths using node sequence when BPEL has concurrent and
synchronization structures.

As a matter of fact, in the view of flow graph, path can
be interpreted as all the nodes and edges visited, together
with their orders in one execution of program. Simple paths
of the whole process could be obtained by analyzing the
information carried by XBFG elements. This is because the
decision and merge nodes are divided into several categories:
AND, OR, NOR. Secondly, id of source nodes and target
nodes are involved in the fields of edges. As a result, set of
XBFG elements can be used to interpret simple path p. The
execution order is hidden in the source and target fields of
elements.

Path of XBFG is defined as an element set containing
nodes and edges. The logical order of elements will be
determined according to the source and target field of each
element. Each path can be started from the initial node of
XBFG. The initial node of path has two cases: the first case
is path begins with an SN when the process starts from
start activity <receive>, which means the process will
be invoked by a component service through a message; the
second case is path begins with an EDN when the process
starts from the other start activity <pick>. The XBFG paths
are defined as follows:

Control flow path is a set pf = {ei, ..., ei+k, ..., ei+n}
(0 ≤ k ≤ n, ei+k ∈ IN∪NN∪EN∪MN∪CN∪CE), for
∀ei+k(ei+k ∈ pf), ∃ei+p(0 ≤ p ≤ n), ei+p ∈ ei+k.target.

Message path is a set pm = {ej, ..., ej+k, ..., ej+m}(0 ≤
k ≤ m, ej+k ∈ SN ∪ ME), pm starts from a message

edge em and ends at another message edge e′m. For ej+k

(ej+k ∈ pm ∧ ej+k final message edge), ej+q(0 ≤ q ≤ m),
ej+q ∈ ej+k.target.

A path of XBFG is composed of a control flow path pf

and several message path pm, that is, p = pf1∪pm1...∪pmi∪
...pmm (1 ≤ i ≤ n). For pmi(1 ≤ i ≤ n), ∃inm, inm ∈ pf∧
inm ∈ IN ∧ em ∈ pmi(em ∈ inm.target em ∈ inm.source).

The steps of generating XBFG and XBFG paths have been
illuminated in our previous work[5]. Here we focus on the
test case selection and generation problem.

III. TEST CASE SELECTION AND GENERATION

The influence of the three types of evolution of BPEL
composite service on testing can be analyzed by comparing
different XBFG models. For example, there will be dif-
ferences between elements of two XBFGs if the process
changes. Again, if a binding change occurs on composite
service, the value of endpoint field in the two service node
must be different. In order to analyze the influence on the
testing paths, we classify changes embodied on XBFG as
four types:

Process change, which includes the modification of BPEL
activities and order of activities.

Binding change, which means the modification of service
endpoints.

Path condition change, which means change of path
conditions caused by modification of process or predicate
constraints.

Interface change, which includes modification of mes-
sages or variables defined in WSDL of composite service
or component services.

Let S1, ..., Si, ..., Sn denote versions of composite service,
'i denote the modification from Si to Si+1, that is, the
increment of Si+1 relative to Si, then Si+1 = Si +'i(1 ≤
i ≤ n − 1).

Let 'ip, 'ib, 'ic and 'ii denote process changes, bind-
ing changes, path condition changes and interface changes
of Si+1 relative to Si, then 'i = 'ip + 'ib + 'ic + 'ii.
Let Gi and Gi+1 denote the XBFGs mapped from Si and
Si+1, Pi and Pi+1 denote the path set of Gi and Gi+1, Bi

and Bi+1 denote the partner link set of Gi and Gi+1, Ci

and Ci+1 denote the path condition set of Gi and Gi+1,
Ii and Ii+1 denote the interface set of Gi and Gi+1, then
'ip = Pi+1 − Pi, 'ib = Bi+1 − Bi, 'ip = Ci+1 − Ci,
'ii = Ii+1 − Ii.

Suppose P s
i+1 is the paths to be retested of Si+1,

where Si+1 is the composite service under test. Obviously,
P s

i+1 ⊆ Pi+1. Let P sp
i+1, P sb

i+1, P sc
i+1 and P si

i+1 denote the
XBFG paths of Si+1 influenced by process changes, bind-
ing changes, path condition changes and interface changes
respectively, then P s

i+1 = P sp
i+1 ∪ P sb

i+1 ∪ P sc
i+1 ∪ P si

i+1

As all the four types of changes can be embodied in
XBFG paths ultimately, so there exists a mapping ϕ, which
makes P sp

i+1 = ϕ('ip), P sb
i+1 = ϕ('ib), P sc

i+1 = ϕ('ic),
P si

i+1 = ϕ('ii).
Suppose Ti is the test case suite of Si, for each test case t

in Ti, there exists a mapping ψ, which makes p = ψ(t)(t ∈
Ti, p ∈ Pi). That is to say, there is always a test case suite
Tij for each path pij in Pi, namely, Pij = ψ(Tij)(Tij ⊆
Ti, pij ∈ Pi), and therefore, Tij = ψ−1(Tij)(Tij ⊆ Ti, pij ∈
Pi).

Again, there is always a test case suite T s
(i+1)j

for each path ps
(i+1)j in P s

i+1, namely, T s
(i+1)j =

ψ−1(ps
(i+1)j)(T

s
(i+1)j ⊆ T s

i+1, p
s
(i+1)j ∈ P s

i+1). So test case

suite selected is T s
i+1 = |Pi+1|

j=1 T s
(i+1)j

Where |Pi+1| is the number of elements in Pi+1, i.e., the
number of paths of Gi+1. Paths in P s

i+1 are partly from Pi

of Gi, denoted as P so
i+1, and partly from new paths of Gi+1,

denoted as P sn
i+1. So testing some of the paths in P s

i+1 can
use test cases in Ti, and others need new test cases.

The steps for performing test case selection and generation
on Si+1 against Si are as follows.

(1) Path comparison (process and binding comparison):
compare the paths in Pi and Pi+1 one by one to get P sp

i+1
and P sb

i+1. Some of the paths in P sp
i+1 are same as the paths

in Pi, denoted as P spo
i+1 , others are new paths, denoted as

P spn
i+1 . All the paths in P sb

i+1 are the same as paths in Pi.
So move elements in either P spo

i+1 or P sb
i+1 into P so

i+1, move
elements of P spn

i+1 into P sn
i+1.

(2) Interface comparison: compare the interfaces of each
path in P so

i+1 with the corresponding path of Pi one by one.
If some of the interfaces are found different, it indicates
that new test cases are needed for these paths. So they need
to be moved to P sn

i+1. In succession, do comparison on the
interfaces of each path in {Pi+1 − P so

i+1 − P sn
i+1} and Pi to

find out paths whose interfaces changed and move them to
P sn

i+1.
(3) Path condition comparison: generate path conditions

for Pi and P sn
i+1 generated in step (1). Once it is found that

certain path in P sn
i+1 has the same path condition as a path

in Pi, move it to P so
i+1 because the two paths could use the

same test cases.
(4) Match the test cases in Ti and the paths in P so

i+1 and
add these test cases into T s

i+1.

(5) Generate certain quantity of test cases for each path
in P sn

i+1 according to interfaces and path conditions obtained
by step (2) and step (3).

Suppose we are going to operate regression testing on S′

against a baseline version S, G and G′ are the XBFGs of
S and S′, P and P ′ are path set of G and G′, T is the test
case suite of S, Ps is the set of path selected for regression
testing, which is comprised of two parts, one is the set of
paths which can use the test cases of baseline version, named
Ps1, and the other is the set of paths which need new test
case, named Ps2. The following sections will explain how
to do test case selection and generation on S and S′.

A. XBFG Path Comparison

The purpose of path comparison is to find out the path
influenced by process and binding changes. If a path has
binding changes and has no process changes, it should be
moved to Ps1, and otherwise, it should be moved to Ps2.

As different XBFG elements have different ids, set of
changed elements, including SN with different endpoints,
can be obtained by comparing id of elements in set N
(element set of G) and N ′(element set of G′). The situations
of changing can be divided into two categories: (1) if
element n /∈ N ∧ n ∈ N ′, take n as a new element; (2) if
element n ∈ N∧n /∈ N ′, take n as a deleted element. Create
a set of new elements, named Nadd, and a set of deleted
elements, named Ndel. For each element in Nadd, search all
the paths which contain this element and move them into
Ps2. Ndel will be dealt with as follows: for each pi in P , let
Ndi denotes all the deleted elements in pi, p′i = pi − Ndi,
if p′i is in P ′, add p′i into Ps2. Algorithm 1 describes the
process of computing Ps2.

B. Service Interface Comparison

By comparing path elements, it could be decided which
paths need new test cases, but we can’t conclude the other
paths can be tested using test cases of baseline version, as in
some cases, input variables may be different. Actually, not
only the external interface of BPEL composite service, but
also the internal interfaces between process and component
services need to be compared. The previous is usually
specified in WSDL of composite service and the latter is
specified in WSDL of component services, both of which
are visible to the service integrator.

BPEL makes message exchanges with component services
and client applications using <invoke>, <receive>,
<reply> and <onMessage> activities. In these activ-
ities, the interface information, such as partnerLink,
operation and portType, is recorded in the attributes
nested in activities. As a result, variable definition in WSDL
can be located by analyzing attribute information carried in
XBFG elements.

In WSDL specification, message is defined as an entity
encapsulating variables to be exchanged between Web ser-
vices. Message is a collection of parts, each of which is

input : P, P’: Two path sets to be compared
N, N’: Element sets of P and P’

output: Ps1: Path of old version to be retested
Ps2: Path of new version to be retested

PathComparison(P, P’, N, N’): Ps1, Ps2;1
Nall = N ∪ N ′;2
for each element of Nall : n do3

if n /∈ N ∧ n ∈ N ′ then4
Nadd = Nadd ∪ {n}5

end6
else if n ∈ N ∧ n /∈ N ′ then7

Ndel = Ndel ∪ {n}8
end9
for each element of Nall : nadd do10

for each element of P ′ : p′ do11
if nadd ∈ p′ then12

Ps2 = Ps2 ∪ {p′}13
end14

end15
end16
for each element of Ps2 : ps2 do17

for each element of Ps2 : n do18
if n ∈ Nadd&&(n.category == SN ||n.category ==19
ME) then

Ps1 = Ps2 ∪ {ps2}20
end21

end22
end23
for each element of P : pi do24

for each element of Ndel : ndel do25
if ndel ∈ pi then26

Ndi = Ndi ∪ {ndel}27
end28

end29
if p′

i = (pi − Ndel) ∈ P ′ then30
Ps2 = Ps2 ∪ {p′

i}31
end32

end33
return Ps1, Ps2;34

end35
Algorithm 1: path comparison algorithm

comprised of a name and a data type. The data type of part
adopts the XSD (XML Schema Definition) as the standard,
which contains embedded standard data type, such as string,
Boolean, decimal and so on, and complex data type will
be defined by users. So interface comparison is actually a
process of comparison on variables and messages. As INs
of XBFG contain operation and portType field, the
interface comparison could start from these INs and draw
to the end when affected paths are found out.

Suppose p is a path of G, p′ is a path of G′. Consider
path pair p and p′, both of them have the same elements.
Let SIN denotes sequential list of INs in p and SIN ′

denote sequential list of INs in p′, obviously, SIN = SIN ′ .
Firstly, a list of WSDL messages are found out by analyzing
each element in SIN for p and p′ respectively. Suppose p
has a sequential list of messages M = M1M2...Mi...Mn,
p′ has another message list M ′ = M ′

1M
′
2...M

′
i ...M

′
n. The

next step is to compare message definitions one by one,
that is, to check if definition of Mi is identical to that
of M ′

i . According to WSDL schema, a message is usually
composed by one or more parts, each of which is an element
of basicType or ComplexType. So the items to be
compared conclude not only the message definitions, but
also the definitions of part and element. This checking is

restrict because even if one type of element is different from
the other, it will draw to the conclusion that M is not equal
to M ′, testers need to move this path to Ps2 and generate
new test cases or modify the old ones when M ! = M ′.
Algorithm 2 describes the details of interface comparison,
where the method findMsg(n) is the function of finding
message name according to the given n ∈ IN .

input : p, p’: Two paths to be compared based on interfaces
output: result: Comparison result of p and p′

InterfaceComparison(p, p’);1
for each element of p : n do2

if p.category == SN then3
SIN = SIN ∪ {n};4
m = findMsg(n);5
M = M ∪ {m}6

end7
end8
for each element of p′ : n′ do9

if p′.category == SN then10
S′

IN = S′
IN ∪ {n′};11

m′ = findMsg(n′);12
M ′ = M ′ ∪ {m′}13

end14
end15
for each message pair(m, m′) do16

if m == m′ then17
compare each part of m with that of m′18

end19
end20

Algorithm 2: interface comparison algorithm

C. Path Condition Comparison

After path and interface comparison, paths to be retested
have been divided into two parts: one is the paths with
no need of generating new test cases, and the other is
those paths which need new cases. In order to make use
of test cases of baseline versions in a maximum and avoid
redundant test case generation, we adopt the principle of
predicate logic and compare path conditions of two versions.
If they are proved to be identical, test cases corresponding
to the path in baseline version will be used in regression
testing.

BPEL program is in fact a structured program. However,
compared to general control flow, BPEL flow is more
complex because some new mechanism, such as Control
Dependencies and Dead Path Elimination, are introduced to
BPEL. The predicate constraint occurs not only in branch
nodes, but also in merge nodes.

The condition fields record predicate constraint (or prc) of
XBFG elements. Predicate constraint is composed of expres-
sion and operand. In BPEL, expression may be variable or
function. Let E denote the expression, op is the operand set
and op ∈ {=, >, >=, <, <=, ! =, !}. Generally speaking,
there are three kinds of predicate constraint in XML Schema:

(1) Boolean prc. Its general format is op E1, where E1

is an expression, the value of which is a Boolean datum,
op ∈ {!}.

(2) Numeric prc. Its general format is E1 op E2, where
E1 and E2 are two expressions, the values of which are

numeric data, op ∈ {=, >, >=, <, <=, ! =}.
(3) String prc. Its general format is E1 op E2, where E1

and E2 are two expressions, the values of which are string
data, op ∈ {=, ! =}.

Due to the classification of XBFG elements, EDN ,
EMN , MBN , MMN , CBN , CMN and CE may have
condition field. But predicate constraints only exist in CEs
whose sources are branch nodes and in those whose targets
are merge nodes. So they are divided into branch predicate
and merge predicate.

We define branch predicate as a condition expression
attached with control edges whose source is branch node.
As we mentioned in section 2, the branch predicate are
fetched from <condition> sub element nested in <if>,
<while> and <repeatUntil>. Usually, the predicate is
Boolean, Numeric or String type.

Merge predicate is defined as a condition expres-
sion attached with XBFG merge nodes. BPEL designed
<joinCondition> for synchronization of several activ-
ities by evaluating link status. The link has three statuses:
true, false and unset. This kind of predicate is of the Boolean
type. The expression of this predicate is name of link, which
could be regarded as a variable.

Predicate constraint (prc) is defined as a triple prc=<EP,
TP, F>, where EP is the constraint expression, TP is
predicate type and TP={Boolean, Numeric, String}, F
denotes how will prc combined in path condition, F =
{AND, OR}.

Suppose prc and prc′ are two predicate constraints, prc =
prc′ iff prc.EP == prc′.EP && prc.TP == prc′.TP
&& prc.F == prc′.F. That is to say, two predicate
constraints are identical only if their constraint expressions,
types and conjunction are all same as each other.

Path condition (pac) is a vector containing predicate
constraints of this path. The way of getting path condition is
to gathering all the predicate constraints in the path before
combining them together. As predicate constraints reside in
CEs, path condition can be obtained by traversing CEs in
the path. Let pac denote the path condition of p, e denote
CEs in p, then

p.pac = ∪{e.prc|e ∈ p}

Two path conditions are identical if and only if for each prc′

in pac′, we can find one prc in pac, which makes prc =
prc′. Algorithm 3 describes comparison of path conditions.

D. New Test Case Generation

New test cases should be generated for each path in Ps2

after comparison of path, interface and path condition. Test
case is composed of input variables, value of input variables
and path elements. Based on the analysis of interface and
path condition in section 3.2 and 3.3, it is clear that the
input variables exist in the interface documents; also, the
path condition can be worked out by Algorithm 3. In general,

input : p, p′: Paths to be compared based on path condition
output: result: Comparison result of p and p′

PCComparison(p, p’): result1
if p.pac.size !=p’.pac.size then2

return false3
end4
for each prc in p.pac.prci do5

prci.isMatch = false6
end7
for each prc in p′.pac.prc′i do8

prc′i.isMatch = false9
end10
for each prc in p.pac.prci do11

for each prc in p′.pac.prc′i do12
if prci.isMatch == false && prci.EP == prc′i.EP &&13
prci.TP == prc′i.TP && prci.F == prc′i.F then

prc′i.isMatch = prci.isMatch = true;14
end15

end16
end17
for each prc in p′.pac.prc′i do18

if prc′i.isMatch == false then19
result=false20

end21
result=true;22
return result;23

end24
Algorithm 3: path condition comparison algorithm

new test cases could be generated using XBFG. Let SIN

denote the sequence of INs in path p. Definition of input
messages and related variables can be found in WSDL or
xsd file according to the operation field and portType field
of INs in SIN . Variables defined in input messages are
just the input variable of test cases. Test cases are divided
by operations. If the variable definitions and value ranges
of an operation in new version are the same as those of
another operation in the baseline version, the test cases of the
operation in the baseline version could be used in regression
testing. Otherwise, new test cases are needed.

Having fetched the input variables during service interface
comparison, we have formed a skeleton of test case actually.
The test input depends on the strategy adopted. For example,
functional testing needs only the messages from client
application, but integration testing probably needs messages
from all partner services, as well as client. Value of these
input variables is another issue to be considered. As the
path condition has been figured out, the range of value of
these variables could be determined. Indeed, some variables
of the path condition are internal variables of BPEL, but
they can be deduced from the interface variables using the
way of symbolic execution. That is, by replacing the internal
variables with input variables, the predicate constraint is an
expression only about input variables. In this way, range of
value can be worked out using constraint solving.

IV. EXPERIMENTAL EVALUATION

A. Evaluation Mechanism

A test cases is modification-traversing for P and P ′ if and
only if it execute new or modified code in P or formerly
executed code that has been deleted from P ′[6]. Our method

could cover all of the new and modified activities and part
of the deleted activities in BPEL, as well as part of the
new, modified and deleted elements in WSDL. Instead of
traversing the WSDL document line by line, our method
only retrieves interfaces interacting with BPEL process. And
those modifications that are irrespective with the composite
service in WSDL have not been covered. Although it will
decrease the inclusiveness but it can promote the precision
of this test selection technique because those modifications
can’t reveal the possible faults of composite service.

The modification of process, bindings and path conditions
occurs in BPEL and change of interfaces occurs in WSDL.
BPEL is composed by activities, WSDL is composed by
elements and both of them are XML format. Suppose the
actual numbers of changes of BPEL activities, bindings, path
conditions and interfaces are denoted as | 'ip |, | 'ib |,
|'ic |,and |'ii | respectively, the covered numbers of these
four items are mip, mib, mic and mii, then the coverage
of process changes is ρip = mip

&ip
× 100%, the coverage of

bindings changes is ρib = mib
&ib

×100%, the coverage of path
condition changes is ρic = mic

&ic
× 100%, and coverage of

interface changes is ρii = mii
&ii

× 100%.
Changes of BPEL activity, binding and path condition

behaves as changes of elements in XBFG model, so ρip,
ρib and ρic can be represented as the ratio of covered
changes of XBFG elements and actual ones. The path
set worked out by Algorithm 1 covers the new elements,
modified elements, new bindings, modified bindings and
part of deleted elements. Let |nn|, |nm| and |nd| denote
the number of new elements, modified elements and deleted
elements respectively, |n′

d| denote the number of covered
deleted elements, then

ρip =
mip

'ip
× 100% =

|nn| + |nm| + |n′
d|

|nn| + |nm| + |nd|
× 100%

It can be inferred that ρip depends on the proportion between
|n′

d| and the actual changes of XBFG elements.
Let |bn|, |bm| and |bd| denote the number of new bindings,

modified bindings and deleted bindings, then

ρib =
mib

'ib
× 100% =

|bn| + |bm|
|bn| + |bm| + |bd|

× 100%

Let |cn|, |cm| and |cd| denote the number new path
conditions, modified ones and deleted ones, then

ρic =
mic

'ic
× 100% =

|cn| + |cm|
|cn| + |cm| + |cd|

× 100%

WSDL document is composed of the definitions of vari-
ables, messages, portTypes, bindings, ports and services,
while our method may only cover the messages and vari-
ables used by the composite service. Let |VDef |, |MDef |,
|PTDef |, |BDef |, |PDef | and |SDef | denote the variables,
messages, portTypes, bindings, ports and services defined
in WSDL of composite service and components services,

|VUse| and |MUse| denote the number of covered variables
and messages, then

ρii =
mii

&ii
× 100%

=
|VUse| + |MUse|

|VDef | + |MDef | + |PTDef | + |BDef | + |PDef | + |SDef |
× 100%

It can be inferred that ρii depends on the proportion
between (|VUse| + |MUse|) and number of actual changed
elements in WSDL documents.

B. Experimental Results

Loan Flow is a composite service deployed in Oracle
BPEL PM Server. It has passed through a continuous evo-
lution from v1.0, v1.1 to v2.0. v1.0 is the initial version
and the other two are modified versions based on v1.0.
As a result, v1.1 and v2.0 have to be retested to assure
their availability. V1.0 is composed of a BPEL process
LoanFlow.bpel and three component services, which are
CreditRatingService, UnitedLoanService and
StarLoanService. The internal business flow of v1.0
is as follows. The process receives loan application from
the client and picks up SSN from application. Then it
invokes CreditRatingService and waits for its result
of customer loan rank. After receiving this query result,
the process initiates two tasks concurrently. In the first
task the process sends messages to UnitedLoanService
and receives its loan application result. In the second task,
the process sends messages to StarLoanService and
receives its result. Having done the two tasks, the process
compares the two loan application result and select the
service whose APR is lower as the loan service. In the end,
the process sends the selection result to the customer.

In v1.1, the designer decided to use another candidate
service of CreditRatingService to replace the one in
v1.0 without any functionality change and interface change.
That is, a binding change has occurred in v1.1.

However, more improvements have been made in v2.0.
Two additional component services are introduced to this
version, one is customerService, which provides the
function of SSN querying, and the other is TaskService,
which is a user task providing manual checking by users. So
two partner links are added to the process, and some new
interfaces are introduced in. Besides, process of this version
is more complex than the previous version.

In order to generate test suite for v1.1 and v2.0, com-
parisons should be made among the three versions based on
XBFG model. The models constructed for the three versions
are shown in Figure 2. Figure 2(a), (b) and (c) is mapped
from v1.0, v1.1 and v2.0 respectively. The number near node
or edge is the id. Note that the comparison is between two
versions, so the regression testing analysis of v1.1 and v2.0
is independent from each other. In order to identify the two
modeling, id with a bracket in Figure 2(b) represents the id

when operating regression testing analysis between v1.1 and
v2.0.

Test case selection and generation result of v1.1 is shown
in Figure 3. In this figure, ”Previous” denotes the baseline
version, i.e. v1.0; ”New” denotes the modified version, i.e.
v1.1. ”N(E)” is the number of XBFG elements and ”C(E)”
is number of changed XNFG elements. Both of the versions
have 45 elements and the changed number is 6. ”N(M)” is
the number of messages related to the paths of XBFG and
”C(M)” is the number of changed ones. ”N(V)” is the
number of variables related to the composite service and
”C(V)” is the number of changed ones. It can be found out
that both the messages and variables have no changes from
v1.0 to v1.1. ”N(P)” is the number of paths and ”C(P)”
is the number of changed ones. As the 6 changed elements
are the common elements of the 2 paths, so the 2 paths are
both changed paths. ”N(T)” is the number of test cases,
”S(T)” is the number of selected ones and ”G(T)” is the
newly generated ones. There are 6 test cases in v1.0, 3 are
of p1 and the other 3 is of p2. As p′1 in v 1.1 can use
test cases of p1, p′2 can use test cases of p2, v 1.1 need no
new test cases. So the number of selected ones is 6 and the
generated number is 0. In this case, 1 binding has changed
and test cases covered this changed binding. As a result,
ρib = 100%. This case shows that regression testing caused
by binding change doesn’t need to generate new cases. This
result is consistent with the expectation.

Figure 3 and figure 4 show test case selection and gener-
ation result of v1.1 and v2.0, respectively.

As all of the 4 paths in v 2.0 have been influenced
by process, binding and interface changes, they should be
retested and all of them need new test cases. The number
of test cases of v1.1 is 6 and the number of v2.0 is 48, 12
of which are selected and 36 of which are newly generated.
The coverage of test cases is as follows:

• Process: Actually 13 activities were added and the
experiment covered these 13 activities, so ρip=100

• Binding: Actually 2 bindings were added and the ex-
periment covered these 2 activities, so ρib=100

• Path condition: Actually 2 predicate constraint were
added and the experiment covered these 2, ρic =100

• Interfaces: Actually 132 elements were added to Credi-
tRatingService.wsdl and TaskServiceWSIF.wsdl, the ex-
periment covered 10 of them, so ρii = 10/132*100% =
7.58%. The 10 covered interface elements are all used
by the composite service.

In this experiment, we adjust the number of interface ele-
ments irrelative to the composite service and the result shows
keeps increscent when the number of irrelative elements
grows smaller.

V. RELATED WORK

The emergence of Web service imposes a great challenge
on the concept and technology of regression testing. Re-

searchers are trying to find ways of operating regression
testing on composite service according to its character-
istics. In [7], comparisons were made on the cost and
restriction of service regression test operating by different
stakeholders. Xiao et al. made change impact analysis on
business process level and code level, and construct Impact
Propagation Graph on the basis of analyzing Call Graph
in [8]. In [9], Web service was abstracted as a two-level
model, which can be expressed by input-complete TLTS.
Based on the safe and efficient regression test selection
technique proposed by Gregg Rothermel et al.[10], M. Ruth
et al. exploited regression testing selection algorithm by
integrating CFGs[12], [11], [13]. However, it is difficult for
service integrators to obtain whether TLTS, CFG or internal
process of basic services. Cost is another problem that
should not be ignored during regression testing. The cost can
be reduced by building service stubs to simulate behaviors of
messages exchanges between services against data collected
by monitoring[14]. Algebraic model and control flow are
two models used in Regression testing of BPEL composite
service until recently. J. A. Ginige et al expresses BPEL
control flow as algebraic expression using Kleen Algebra,
in this way changes of process are identified by compar-
ing algebraic expressions[15]. Compared with CFG model,
algebraic expression model may encounter difficulties when
expressing complex structures. Control flow model is used in
change impact analysis and regression testing path selection
on BPEL process in [16]. Li et al.[17] exploited a test-
selection minimization algorithm based on [16]. This method
only considers process, which is just a part of composite
service. Component service and interfaces are ignored in
[16], but is discussed in this paper.

VI. CONCLUSION AND FUTURE WORK

The new characteristics of Web service impose a great
challenge on the concept and technology of testing and
maintenance. This paper attempts to eliminate the influ-
ence caused by binding, process and interface changes by
selecting and generating a proper quantity of test cases.
Taking process and interface specification as the entry of
analyzing, this approach models the composite service using
XBFG, which can express not only the process, but also
the message exchanges between process and component
services. Furthermore, the binding and predicate constraint
added to XBFG element is used for test paths selection and
test data generation. Using set of XBFG elements, including
nodes and edges, to express paths, can help finding out
paths to be tested according to the new elements and deleted
elements gained by path comparison. The analysis of path
conditions cuts down the quantity of test cases generated.
The approach makes use of XBFG model to analyze the
influence on regression testing path caused by binding and
interface changes together with process modification, which
cover the main aspects of functional regression testing

Legend

Interaction Node

Service Node

Normal Node

V

X

Concurrent Node

Exclusive Node

Control Edge

Message Edge

(a) XBFG mapped from
v1 .0

(b) XBFG mapped from
v1.1

(c) XBFG mapped from
v2 .0

V

V

X

X

5

1

3

2

4

6
7

8

9

10

11

12

13
14

15
16

17

20

18

21

22

23

24 25

26

27

28

29

29

30

31

32

33

34

35

36

37

38

40

40

41

42

43

44

45

V

V

X

X

5

1

3

4

6
7

8

11

12

13

14

15

16

17

19

18

20

21

22

23 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

19

47
(10)

46
(2)

48
(9)

V

V

X

X

X

X

5

46

47

1

3

4

2

6 48

49

52

7

8 9

11

31

10

32
12

33
21

34 37

13 17

35 38

2015

14

16
36 2039

22
40

25
41 43

23 24

42 44
26

27

28

55

56

57

60

58

59

64

62 63

65

66

67

68

69

30

70

71

72

73

74

75

76

77

78

79

18

61

51

50

Figure 2. XBFG mapped from LoanFlow composite service

Figure 3. Test case selection and generation experimental result of v1.1

Figure 4. Test case selection and generation experimental result of v2.0

of service composition. Generally speaking, this approach
extends the study on regression testing to the composite
service but not only the process. The result of test cases
selection and generation get a high coverage of modifications
when changes occurred in process, bindings and interfaces.
Composite services usually come from different vendors and
service invoking will increase the cost of regression testing.
So a problem to be solved is how to reduce the cost of
regression testing. Besides, BPEL is only one of the service
composition languages. It would be more useful to develop
a more genetic regression testing framework.

ACKNOWLEDGEMENTS

The authors thank Rajiv Gupta, Dennis Jeffrey, and Chen
Tian at University of California Riverside for their valuable
suggestions on the first draft of this paper.

REFERENCES

[1] A. Alves, A. Arkin , S. Askary , et al, OASIS Standard, Web
Services Business Process Execution Language Version 2.0,
http://docs.oasis-open.org/wsbpel/2.0/, 2007.

[2] M. Gudgin, M. Hadley, T. Rogers, et al, Web Services
Addressing 1.0 - WSDL Binding, http:// www. w3. org/ TR/
ws-addr-wsdl, 2006.

[3] Christensen E, Curbera F, Meredith G, et al, W3C
Note, ”Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl, 2001-03

[4] Y. Yuan, Z. Li, and W. Sun, A Graph-search Based Ap-
proach to BPEL4WS Test Generation, In: Proceedings of the
International Conference on Software Engineering Advances
(ICSEA’06) , Tahiti , Oct. 2006, pp. 14-14.

[5] D. Wang, B. Li, and J. Cai, Regression Testing of Composite
Service: An XBFG-Based Approach, In: Proceedings of 2008
IEEE Congress on Services Part II (SERVICES-2).Beijing,
2008, pp. 112-119.

[6] G. Rothermel and M. J. Harrold, Analyzing Regression
Test Selection Techniques. IEEE Transactions on Software
Engineering, 1996, 22 (8), pp. 529-551.

[7] G. Canfora, and M. D. Penta, Testing Services and Services-
Centric Systems: Challenges and Opportunities, IT Pro
March ? April 2006, pp. 10-17.

[8] H. Xiao, J. Guo, and Y. Zou, Supporting Change Impact
Analysis for Service Oriented Business Applications. In:
Proceedings of the 29th International Conference on Software
Engineering Workshops: International Workshop on Systems
Development in SOA Environment (SDSOA), Minneapolis,
2007, pp. 116-121.

[9] A. Tarhini, H. Fouchal, and N. Mansour, Regression Testing
Web Services-based Applications, In: Proceedings of the
IEEE International Conference on Computer Systems and
Applications (AICCSA), 2006, pp. 163-170.

[10] G. Rothermel and M. J. Harrold, A Safe, Efficient Regression
Test Selection Technique, ACM Transactions on Software
Engineering and Methodology, 1997, 6 (2) , pp. 173-210.

[11] M. Ruth, S. Oh, and A. Loup Towards Automatic Regression
Test Selection for Web Services, In: Proceedings of the 31st
Annual International Computer Software and Applications
Conference (COMPSAC 2007), USA, 2007, pp. 729-736.

[12] M. Ruth and S. Tu, A Safe Regression Test Selection
Technique for Web Services, In: Proceedings of the Second
International Conference on Internet and Web Applications
and Services (ICIW’07), pp. 47-47.

[13] F. Lin, M. Ruth, and S. Tu, Applying Safe Regression Test
Selection Techniques to Java Web Services, In: Proceedings
of the International Conference on Next Generation Web
Services Practices (NWeSP), Seoul, 2006, pp. 133-140.

[14] G. Canfora and M. D. Penta, SOA Testing and Self-Checking,
In: Proceedings. of International Workshop on Web Services
- Modeling and Testing (WS-MaTe), Palermo, pp. 3-12.

[15] J. A. Ginige, U. Sirinivasan, and A. Ginige, A Mechanism for
Efficient Management of Changes in BPEL based Business
Processes: An Algebraic Methodology, In: Proceedings of
the IEEE International Conference on e-Business Engineering
(ICEBE’06), USA, 2006, pp.171-178.

[16] H. Liu, Z. Li, J. Zhu, and H. Tan Business Process Regression
Testing, In: Proceedings of the 5th International Conference
on Service Oriented Computing (ICSOC 2007), LNCS 4749,
2007, pp. 157-168.

[17] Z. J. Li, H. F. Tan, H. H. Liu, J. Zhu, and N. M. Mitsumori
Business-process-driven gray-box SOA testing, IBM System
Journal, 2008, 47 (3), pp.457-472

